In this paper, we provide some sufficient conditions for the existence, uniqueness and asymptotic stability of time $ \omega $-periodic mild solutions for a class of non-autonomous evolution equation with multi-delays. This work not only extend the autonomous evolution equation with multi-delays studied in [
Citation: |
[1] |
P. Acquistapace, Evolution operators and strong solution of abstract parabolic equations, Differential Integral Equations, 1 (1988), 433-457.
![]() ![]() |
[2] |
P. Acquistapace and B. Terreni, A unified approach to abstract linear parabolic equations, Rend. Semin. Mat. Univ. Padova, 78 (1987), 47-107.
![]() ![]() |
[3] |
H. Amann, Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe (eds. L. Cesari, R. Kannan and R. Weinberger), Academic Press, New York, (1978), 1–29.
![]() ![]() |
[4] |
H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
doi: 10.1016/0022-0396(88)90156-8.![]() ![]() ![]() |
[5] |
T. Burton, Stability and Periodic Solutions of Ordinary Differential Equations and Functional Differential Equations, Academic Press, Orlando, FL, 1985.
![]() ![]() |
[6] |
T. Burton and B. Zhang, Periodic solutions of abstract differential equations with infinite delay, J. Differential Equations, 90 (1991), 357-396.
doi: 10.1016/0022-0396(91)90153-Z.![]() ![]() ![]() |
[7] |
A. Caicedo, C. Cuevas, G. Mophou and G. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst., 349 (2012), 1-24.
doi: 10.1016/j.jfranklin.2011.02.001.![]() ![]() ![]() |
[8] |
X. Chen and J. S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.
doi: 10.1006/jdeq.2001.4153.![]() ![]() ![]() |
[9] |
P. Chen, X. Zhang and Y. Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020), 559-584.
doi: 10.1007/s43037-019-00008-2.![]() ![]() ![]() |
[10] |
P. Chen, X. Zhang and Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975-1992.
doi: 10.3934/cpaa.2018094.![]() ![]() ![]() |
[11] |
P. Chen, X. Zhang and Y. Li, Non-autonomous evolution equations of parabolic type with non-instantaneous impulses, Mediterr. J. Math., 16 (2019), Paper No. 118, 14 pp.
doi: 10.1007/s00009-019-1384-0.![]() ![]() ![]() |
[12] |
P. Chen, X. Zhang and Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ.Oper. Appl., 10 (2019), 955-973.
doi: 10.1007/s11868-018-0257-9.![]() ![]() ![]() |
[13] |
P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 2020.
doi: 10.3934/dcdsb.2020171.![]() ![]() |
[14] |
W. E. Fitzgibbon, Semilinear functional equations in Banach space, J. Differential Equations, 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2.![]() ![]() ![]() |
[15] |
X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations, 2012 (2012), 15 pp.
![]() ![]() |
[16] |
X. Fu and Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 747-757.
doi: 10.1016/S0252-9602(13)60035-1.![]() ![]() ![]() |
[17] |
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.
doi: 10.1038/287017a0.![]() ![]() |
[18] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
![]() ![]() |
[19] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981.
![]() ![]() |
[20] |
Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Funct. Anal., 261 (2011), 1309-1324.
doi: 10.1016/j.jfa.2011.05.001.![]() ![]() ![]() |
[21] |
D. Li and Y. Wang, Asymptotic behavior of gradient systems with small time delays, Nonlinear Anal. Real World Appl., 11 (2010), 1627-1633.
doi: 10.1016/j.nonrwa.2009.03.015.![]() ![]() ![]() |
[22] |
J. Liang, J. H. Liu and T. J. Xiao, Nonlocal Cauchy problems for nonautonomous evolution equations, Commun. Pure Appl. Anal., 5 (2006), 529-535.
doi: 10.3934/cpaa.2006.5.529.![]() ![]() ![]() |
[23] |
Y. Liu and Z. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl., 316 (2006), 237-255.
doi: 10.1016/j.jmaa.2005.04.045.![]() ![]() ![]() |
[24] |
Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl., 61 (2011), 860-870.
doi: 10.1016/j.camwa.2010.12.034.![]() ![]() ![]() |
[25] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[26] |
J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Basel, 1993.
doi: 10.1007/978-3-0348-8570-6.![]() ![]() ![]() |
[27] |
S. H. Saker, Oscillation and global attractivity in hematopoiesis model with delay time, Appl. Math. Comput., 136 (2003), 241-250.
doi: 10.1016/S0096-3003(02)00035-8.![]() ![]() ![]() |
[28] |
J. H. So, J. Wu and X. Zou, Structured population on two patches: Modeling desperal and delay, J. Math. Biol., 43 (2001), 37-51.
doi: 10.1007/s002850100081.![]() ![]() ![]() |
[29] |
H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, USA, 1997.
![]() ![]() |
[30] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second ed., Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[31] |
R. N. Wang and P. X. Zhu, Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions, Nonlinear Anal., 85 (2013), 180-191.
doi: 10.1016/j.na.2013.02.026.![]() ![]() ![]() |
[32] |
R. N. Wang, K. Ezzinbi and P. X. Zhu, Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.
doi: 10.1216/JIE-2014-26-2-275.![]() ![]() ![]() |
[33] |
Z. Wang, Y. Liu and X. Liu, On global asymptotic stability of neural networks with discrete and distributed delays, Physics Lett. A, 345 (2005), 299-308.
doi: 10.1016/j.physleta.2005.07.025.![]() ![]() |
[34] |
M. Wazewska-Czyzevsia and A. Lasota, Mathematical problems of dynamics of red blood cell system, Ann. Polish Math. Soc. Ser. 3 Appl. Math., 17 (1976), 23-40.
![]() |
[35] |
J. Wu, Theory and Application of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.![]() ![]() ![]() |
[36] |
X. Xiang and N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal., 18 (1992), 1063-1070.
doi: 10.1016/0362-546X(92)90195-K.![]() ![]() ![]() |
[37] |
J. Zhu, Y. Liu and Z. Li, The existence and attractivity of time periodic solutions for evolution equations with delays, Nonlinear Anal. Real World Appl., 9 (2008), 842-851.
doi: 10.1016/j.nonrwa.2007.01.004.![]() ![]() ![]() |
[38] |
B. Zhu, L. Liu and Y. Wu, Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations, Fract. Calc. Appl. Anal., 20 (2017), 1338-1355.
doi: 10.1515/fca-2017-0071.![]() ![]() ![]() |
[39] |
B. Zhu, L. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73-79.
doi: 10.1016/j.aml.2016.05.010.![]() ![]() ![]() |