
-
Previous Article
Topological phase transition III: Solar surface eruptions and sunspots
- DCDS-B Home
- This Issue
-
Next Article
Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence
On the role of pharmacometrics in mathematical models for cancer treatments
1. | Institute of Mathematics, Lodz University of Technology, 90-924 Lodz, Poland |
2. | Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Il, 62026-1653, USA |
3. | Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo, 63130, USA |
We review and discuss various aspects that the modeling of pharmacometric properties has on the structure of optimal solutions in mathematical models for cancer treatment. These include (i) the changes in the interpretation of the solutions as pharmacokinetic (PK) models are added, respectively deleted from the modeling and (ii) qualitative changes in the structures of optimal controls that occur as pharmacodynamic (PD) models are varied. The results will be illustrated with a sample of models for cancer treatment.
References:
[1] |
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003. |
[2] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007. |
[3] |
C. S. Chou and A. Friedman, Introduction to Mathematical Biology - Modeling, Analysis and Simulation, Springer Verlag, 2016.
doi: 10.1007/978-3-319-29638-8. |
[4] |
M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, Berlin, 1979. |
[5] |
L. A. Fernández and C. Pola,
Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy, Discrete and Continuous Dynamical Systems, Series B, 24 (2019), 2577-2612.
doi: 10.3934/dcdsb.2018266. |
[6] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775. Google Scholar |
[7] |
A. Källén, Computational Pharmacokinetics, Chapman and Hall, CRC, London, 2007. Google Scholar |
[8] |
H. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ, USA, 2002. Google Scholar |
[9] |
M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65, (1983), 120–130. Google Scholar |
[10] |
U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267–276.
doi: 10.1007/978-3-642-12598-0_23. |
[11] |
U. Ledzewicz, H. Maurer and H. Schättler,
Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307-323.
doi: 10.3934/mbe.2011.8.307. |
[12] |
U. Ledzewicz and H. Moore, Dynamical systems properties of a mathematical model for the treatment of CML, Applied Sciences, 6 (2016), 291.
doi: 10.3390/app6100291. |
[13] |
U. Ledzewicz and H. Moore,
Optimal control applied to a generalized Michaelis-Menten model of CML therapy, Dicrete and Continuous Dynamical Systems, Series B, 23 (2018), 331-346.
doi: 10.3934/dcdsb.2018022. |
[14] |
U. Ledzewicz and H. Schättler,
Controlling a model for bone marrow dynamics in cancer chemotherapy, Mathematical Biosciences and Engineering, 1 (2004), 95-110.
doi: 10.3934/mbe.2004.1.95. |
[15] |
U. Ledzewicz and H. Schättler,
Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.
doi: 10.1023/A:1016027113579. |
[16] |
U. Ledzewicz and H. Schättler,
The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
doi: 10.3934/mbe.2005.2.561. |
[17] |
U. Ledzewicz and H. Schättler,
Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
doi: 10.1137/060665294. |
[18] |
U. Ledzewicz and H. Schättler,
Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. of Theoretical Biology, 252 (2008), 295-312.
doi: 10.1016/j.jtbi.2008.02.014. |
[19] |
U. Ledzewicz and H. Schättler,
Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 1501-1523.
|
[20] |
M. Leszczyński, E. Ratajczyk, U. Ledzewicz and H. Schättler,
Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics, Opuscula Mathematica, 37 (2017), 403-419.
doi: 10.7494/OpMath.2017.37.3.403. |
[21] |
M. Leszczyński, U. Ledzewicz and H. Schättler,
Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics, Discrete and Continuous Dynamical Systems, Series B, 24 (2019), 2315-2334.
doi: 10.3934/dcdsb.2019097. |
[22] |
M. Leszczyński, U. Ledzewicz and H. Schättler, Optimal control for a mathematical model for chemotherapy with pharmacometrics, Mathematical Modelling of Natural Phenomena, 2020.
doi: 10.1051/mmnp/2020008. |
[23] |
H. Moore, U. Ledzewicz and L. Strauss,
Optimization of combination therapy for chronic myeloid leukemia with dosing constraints, J. of Mathematical Biology, 77 (2018), 1533-1561.
doi: 10.1007/s00285-018-1262-6. |
[24] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222, (2009), 13–26.
doi: 10.1016/j.mbs.2009.08.004. |
[25] |
P. Macheras and A. Iliadin, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Interdisciplinary Applied Mathematics, Vol. 30, 2nd ed., Springer, New York, 2016.
doi: 10.1007/978-3-319-27598-7. |
[26] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific Press, ingapore, 1994.
doi: 10.1142/2048.![]() |
[27] |
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach, J. of Theoretical Medicine, 3 (2001), 79-100. Google Scholar |
[28] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964. |
[29] |
M. Rowland and T.N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics, Wolters Kluwer Lippicott, Philadelphia, 1995. Google Scholar |
[30] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[31] |
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015.
doi: 10.1007/978-1-4939-2972-6. |
[32] |
H. Schättler, U. Ledzewicz and H. Maurer,
Sufficient conditions for strong locak optimality in optimal control problems with $L_2$-type objectives and control constraints, Dicrete and Continuous Dynamical Systems, Series B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657. |
[33] |
S. Shimoda, K. Nishida, M. Sakakida, Y. Konno, K. Ichinose, M. Uehara, T. Nowak and M. Shichiri, Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas, Frontiers of Medical and Biological Engineering, 8 (1997), 197-211. Google Scholar |
[34] |
H. E. Skipper,
On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.
|
[35] |
G. W. Swan, Applications of Optimal Control Theory in Medicine, Marcel Dekker, New York, 1984. |
[36] |
G. W. Swan,
General applications of optimal control theory in cancer chemotherapy, IMA J. of Mathematical Applications in Medicine and Biology, 5 (1988), 303-316.
doi: 10.1093/imammb/5.4.303. |
[37] |
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101, (1990), 237–284. Google Scholar |
[38] |
A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, Biomedical Systems Modelling and Simulation (Paris, 1988), 51–53, IMACS Ann. Comput. Appl. Math., 5, IMACS Trans. Sci. Comput. '88, Baltzer, Basel, 1989. |
[39] |
A. Swierniak,
Cell cycle as an object of control,, Journal of Biological Systems, 3 (1995), 9-54.
doi: 10.1007/978-3-319-28095-0_2. |
show all references
References:
[1] |
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003. |
[2] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007. |
[3] |
C. S. Chou and A. Friedman, Introduction to Mathematical Biology - Modeling, Analysis and Simulation, Springer Verlag, 2016.
doi: 10.1007/978-3-319-29638-8. |
[4] |
M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, Berlin, 1979. |
[5] |
L. A. Fernández and C. Pola,
Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy, Discrete and Continuous Dynamical Systems, Series B, 24 (2019), 2577-2612.
doi: 10.3934/dcdsb.2018266. |
[6] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775. Google Scholar |
[7] |
A. Källén, Computational Pharmacokinetics, Chapman and Hall, CRC, London, 2007. Google Scholar |
[8] |
H. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ, USA, 2002. Google Scholar |
[9] |
M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65, (1983), 120–130. Google Scholar |
[10] |
U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267–276.
doi: 10.1007/978-3-642-12598-0_23. |
[11] |
U. Ledzewicz, H. Maurer and H. Schättler,
Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307-323.
doi: 10.3934/mbe.2011.8.307. |
[12] |
U. Ledzewicz and H. Moore, Dynamical systems properties of a mathematical model for the treatment of CML, Applied Sciences, 6 (2016), 291.
doi: 10.3390/app6100291. |
[13] |
U. Ledzewicz and H. Moore,
Optimal control applied to a generalized Michaelis-Menten model of CML therapy, Dicrete and Continuous Dynamical Systems, Series B, 23 (2018), 331-346.
doi: 10.3934/dcdsb.2018022. |
[14] |
U. Ledzewicz and H. Schättler,
Controlling a model for bone marrow dynamics in cancer chemotherapy, Mathematical Biosciences and Engineering, 1 (2004), 95-110.
doi: 10.3934/mbe.2004.1.95. |
[15] |
U. Ledzewicz and H. Schättler,
Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.
doi: 10.1023/A:1016027113579. |
[16] |
U. Ledzewicz and H. Schättler,
The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
doi: 10.3934/mbe.2005.2.561. |
[17] |
U. Ledzewicz and H. Schättler,
Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
doi: 10.1137/060665294. |
[18] |
U. Ledzewicz and H. Schättler,
Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. of Theoretical Biology, 252 (2008), 295-312.
doi: 10.1016/j.jtbi.2008.02.014. |
[19] |
U. Ledzewicz and H. Schättler,
Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 1501-1523.
|
[20] |
M. Leszczyński, E. Ratajczyk, U. Ledzewicz and H. Schättler,
Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics, Opuscula Mathematica, 37 (2017), 403-419.
doi: 10.7494/OpMath.2017.37.3.403. |
[21] |
M. Leszczyński, U. Ledzewicz and H. Schättler,
Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics, Discrete and Continuous Dynamical Systems, Series B, 24 (2019), 2315-2334.
doi: 10.3934/dcdsb.2019097. |
[22] |
M. Leszczyński, U. Ledzewicz and H. Schättler, Optimal control for a mathematical model for chemotherapy with pharmacometrics, Mathematical Modelling of Natural Phenomena, 2020.
doi: 10.1051/mmnp/2020008. |
[23] |
H. Moore, U. Ledzewicz and L. Strauss,
Optimization of combination therapy for chronic myeloid leukemia with dosing constraints, J. of Mathematical Biology, 77 (2018), 1533-1561.
doi: 10.1007/s00285-018-1262-6. |
[24] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222, (2009), 13–26.
doi: 10.1016/j.mbs.2009.08.004. |
[25] |
P. Macheras and A. Iliadin, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Interdisciplinary Applied Mathematics, Vol. 30, 2nd ed., Springer, New York, 2016.
doi: 10.1007/978-3-319-27598-7. |
[26] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific Press, ingapore, 1994.
doi: 10.1142/2048.![]() |
[27] |
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach, J. of Theoretical Medicine, 3 (2001), 79-100. Google Scholar |
[28] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964. |
[29] |
M. Rowland and T.N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics, Wolters Kluwer Lippicott, Philadelphia, 1995. Google Scholar |
[30] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[31] |
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015.
doi: 10.1007/978-1-4939-2972-6. |
[32] |
H. Schättler, U. Ledzewicz and H. Maurer,
Sufficient conditions for strong locak optimality in optimal control problems with $L_2$-type objectives and control constraints, Dicrete and Continuous Dynamical Systems, Series B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657. |
[33] |
S. Shimoda, K. Nishida, M. Sakakida, Y. Konno, K. Ichinose, M. Uehara, T. Nowak and M. Shichiri, Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas, Frontiers of Medical and Biological Engineering, 8 (1997), 197-211. Google Scholar |
[34] |
H. E. Skipper,
On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.
|
[35] |
G. W. Swan, Applications of Optimal Control Theory in Medicine, Marcel Dekker, New York, 1984. |
[36] |
G. W. Swan,
General applications of optimal control theory in cancer chemotherapy, IMA J. of Mathematical Applications in Medicine and Biology, 5 (1988), 303-316.
doi: 10.1093/imammb/5.4.303. |
[37] |
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101, (1990), 237–284. Google Scholar |
[38] |
A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, Biomedical Systems Modelling and Simulation (Paris, 1988), 51–53, IMACS Ann. Comput. Appl. Math., 5, IMACS Trans. Sci. Comput. '88, Baltzer, Basel, 1989. |
[39] |
A. Swierniak,
Cell cycle as an object of control,, Journal of Biological Systems, 3 (1995), 9-54.
doi: 10.1007/978-3-319-28095-0_2. |





[1] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[2] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[3] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[4] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[6] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[7] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[8] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[9] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[10] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[11] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[12] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[13] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[14] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[15] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[16] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[17] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[18] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[19] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[20] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]