[1]
|
M. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103-3118.
doi: 10.1142/S0218127411030416.
|
[2]
|
A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators: Adiwes International Series in Physics, vol. 4, Elsevier, 2013.
|
[3]
|
J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.
doi: 10.1006/jdeq.1994.1004.
|
[4]
|
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields. Ⅰ, Nonlinear Anal., 29 (1997), 783-811.
doi: 10.1016/S0362-546X(96)00088-0.
|
[5]
|
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields Ⅱ, Nonlinear Anal., 39 (2000), 351-363.
doi: 10.1016/S0362-546X(98)00177-1.
|
[6]
|
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.
doi: 10.1007/s12346-011-0052-y.
|
[7]
|
A. Cima, A. Gasull and F. Mañosas, On polynomial Hamiltonian planar vector fields, J. Differential Equations, 106 (1993), 367-383.
doi: 10.1006/jdeq.1993.1112.
|
[8]
|
A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N.
|
[9]
|
I. E. Colak, J. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.
doi: 10.1016/j.jde.2014.05.024.
|
[10]
|
I. E. Colak, J. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math., 259 (2014), 655-687.
doi: 10.1016/j.aim.2014.04.002.
|
[11]
|
I. E. Colak, J. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 258 (2015), 846-879.
doi: 10.1016/j.jde.2014.10.006.
|
[12]
|
I. E. Colak, J. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 262 (2017), 5518-5533.
doi: 10.1016/j.jde.2017.02.001.
|
[13]
|
F. S. Dias, J. Llibre and C. Valls, Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers, Math. Comput. Simulation, 144 (2018), 60-77.
doi: 10.1016/j.matcom.2017.06.002.
|
[14]
|
F. Dumortier, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, Springer, 1993, 19–73.
|
[15]
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.
|
[16]
|
A. Gasull, A. Guillamon and V. Mañosa, Phase portrait of Hamiltonian systems with homogeneous nonlinearities, Nonlinear Anal., 42 (2000), 679-707.
doi: 10.1016/S0362-546X(99)00131-5.
|
[17]
|
H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass, 1951.
|
[18]
|
A. Guillamon and C. Pantazi, Phase portraits of separable Hamiltonian systems, Nonlinear Anal., 74 (2011), 4012-4035.
doi: 10.1016/j.na.2011.03.030.
|
[19]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4757-2421-9.
|
[20]
|
J. S. W. Lamb and M. Roberts, Reversible equivariant linear systems, J. Differential Equations, 159 (1999), 239-279.
doi: 10.1006/jdeq.1999.3632.
|
[21]
|
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8.
|
[22]
|
J. Llibre, Y. P. Martínez and C. Vidal, Phase portraits of linear type centers of polynomial hamiltonian systems with hamiltonian function of degree $5$ of the form $H = H_1(x)+ H_2(y)$, Discrete Contin. Dyn. Syst. Ser., 39 (2019), 75-113.
doi: 10.3934/dcds.2019004.
|
[23]
|
J. Llibre, Y. P. Martínez and C. Vidal, Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the $y$-axis, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 887-912.
doi: 10.3934/dcdsb.2018047.
|
[24]
|
J. Llibre, R. Oliveira and C. Valls, Phase portraits for some symmetric Riccati cubic polynomial differential equations, Topology Appl., 234 (2018), 220-237.
doi: 10.1016/j.topol.2017.11.023.
|
[25]
|
J. Llibre and C. Pessoa, Phase portraits for quadratic homogeneous polynomial vector fields on $\Bbb S^2$, Rend. Circ. Mat. Palermo, 58 (2009), 361-406.
doi: 10.1007/s12215-009-0030-2.
|
[26]
|
N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962.
|
[27]
|
D. A. Neumann, Classification of continuous flows on $2$-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.
doi: 10.1090/S0002-9939-1975-0356138-6.
|
[28]
|
H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (i), Journal de Mathématiques Pures et Appliquées, 7 (1881), 375–422.
|
[29]
|
B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.
doi: 10.1007/s12346-016-0199-7.
|
[30]
|
J. Reyn, Phase Portraits of Planar Quadratic Systems, vol. 583, Springer, New York, 2007.
|
[31]
|
D. Schlomiuk and X. Zhang, Quadratic differential systems with complex conjugate invariant lines meeting at a finite point, J. Differential Equations, 265 (2018), 3650-3684.
doi: 10.1016/j.jde.2018.05.014.
|
[32]
|
Y. Tian and Y. Zhao, Global phase portraits and bifurcation diagrams for Hamiltonian systems of linear plus quartic homogeneous polynomials symmetric with respect to the $y$-axis, Nonlinear Anal., 192 (2020), 111658, 27pp.
doi: 10.1016/j.na.2019.111658.
|
[33]
|
X. Yang, Global phase-portraits of plane homogeneous polynomial vector fields and stability of the origin, Systems Sci. Math. Sci., 10 (1997), 33-40.
|
[34]
|
Y. Ye et al., Theory of Limit Cycles, vol. 66 of Transl. Math. Monographs, Amer. Math. Soc, Providence, RI, 1986.
|