doi: 10.3934/dcdsb.2020214

Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials

School of Mathematics (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082, China

* Corresponding author: Yulin Zhao

Received  July 2019 Published  July 2020

Fund Project: This research is supported by the NSF of China (No.11971495 and No.11801582)

This paper is devoted to the complete classification of global phase portraits for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Such system is affinely equivalent to one of five normal forms by an algebraic classification of its infinite singular points. Then, we classify the global phase portraits of these normal forms on the Poincaré disc. There are exactly $ 13 $ different global topological structures on the Poincaré disc. Finally we provide the bifurcation diagrams for the corresponding global phase portraits.

Citation: Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020214
References:
[1]

M. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators: Adiwes International Series in Physics, vol. 4, Elsevier, 2013. Google Scholar

[3]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.  Google Scholar

[4]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields. Ⅰ, Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar

[5]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields Ⅱ, Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar

[6]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.  doi: 10.1007/s12346-011-0052-y.  Google Scholar

[7]

A. CimaA. Gasull and F. Mañosas, On polynomial Hamiltonian planar vector fields, J. Differential Equations, 106 (1993), 367-383.  doi: 10.1006/jdeq.1993.1112.  Google Scholar

[8]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[9]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[10]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math., 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[11]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[12]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[13]

F. S. DiasJ. Llibre and C. Valls, Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers, Math. Comput. Simulation, 144 (2018), 60-77.  doi: 10.1016/j.matcom.2017.06.002.  Google Scholar

[14]

F. Dumortier, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, Springer, 1993, 19–73. Google Scholar

[15]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.  Google Scholar

[16]

A. GasullA. Guillamon and V. Mañosa, Phase portrait of Hamiltonian systems with homogeneous nonlinearities, Nonlinear Anal., 42 (2000), 679-707.  doi: 10.1016/S0362-546X(99)00131-5.  Google Scholar

[17]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass, 1951.  Google Scholar

[18]

A. Guillamon and C. Pantazi, Phase portraits of separable Hamiltonian systems, Nonlinear Anal., 74 (2011), 4012-4035.  doi: 10.1016/j.na.2011.03.030.  Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[20]

J. S. W. Lamb and M. Roberts, Reversible equivariant linear systems, J. Differential Equations, 159 (1999), 239-279.  doi: 10.1006/jdeq.1999.3632.  Google Scholar

[21]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[22]

J. LlibreY. P. Martínez and C. Vidal, Phase portraits of linear type centers of polynomial hamiltonian systems with hamiltonian function of degree $5$ of the form $H = H_1(x)+ H_2(y)$, Discrete Contin. Dyn. Syst. Ser., 39 (2019), 75-113.  doi: 10.3934/dcds.2019004.  Google Scholar

[23]

J. LlibreY. P. Martínez and C. Vidal, Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the $y$-axis, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 887-912.  doi: 10.3934/dcdsb.2018047.  Google Scholar

[24]

J. LlibreR. Oliveira and C. Valls, Phase portraits for some symmetric Riccati cubic polynomial differential equations, Topology Appl., 234 (2018), 220-237.  doi: 10.1016/j.topol.2017.11.023.  Google Scholar

[25]

J. Llibre and C. Pessoa, Phase portraits for quadratic homogeneous polynomial vector fields on $\Bbb S^2$, Rend. Circ. Mat. Palermo, 58 (2009), 361-406.  doi: 10.1007/s12215-009-0030-2.  Google Scholar

[26]

N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962.  Google Scholar

[27]

D. A. Neumann, Classification of continuous flows on $2$-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[28]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (i), Journal de Mathématiques Pures et Appliquées, 7 (1881), 375–422. Google Scholar

[29]

B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.  doi: 10.1007/s12346-016-0199-7.  Google Scholar

[30]

J. Reyn, Phase Portraits of Planar Quadratic Systems, vol. 583, Springer, New York, 2007.  Google Scholar

[31]

D. Schlomiuk and X. Zhang, Quadratic differential systems with complex conjugate invariant lines meeting at a finite point, J. Differential Equations, 265 (2018), 3650-3684.  doi: 10.1016/j.jde.2018.05.014.  Google Scholar

[32]

Y. Tian and Y. Zhao, Global phase portraits and bifurcation diagrams for Hamiltonian systems of linear plus quartic homogeneous polynomials symmetric with respect to the $y$-axis, Nonlinear Anal., 192 (2020), 111658, 27pp. doi: 10.1016/j.na.2019.111658.  Google Scholar

[33]

X. Yang, Global phase-portraits of plane homogeneous polynomial vector fields and stability of the origin, Systems Sci. Math. Sci., 10 (1997), 33-40.   Google Scholar

[34]

Y. Ye et al., Theory of Limit Cycles, vol. 66 of Transl. Math. Monographs, Amer. Math. Soc, Providence, RI, 1986.  Google Scholar

show all references

References:
[1]

M. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators: Adiwes International Series in Physics, vol. 4, Elsevier, 2013. Google Scholar

[3]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.  Google Scholar

[4]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields. Ⅰ, Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar

[5]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields Ⅱ, Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar

[6]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.  doi: 10.1007/s12346-011-0052-y.  Google Scholar

[7]

A. CimaA. Gasull and F. Mañosas, On polynomial Hamiltonian planar vector fields, J. Differential Equations, 106 (1993), 367-383.  doi: 10.1006/jdeq.1993.1112.  Google Scholar

[8]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[9]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[10]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math., 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[11]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[12]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[13]

F. S. DiasJ. Llibre and C. Valls, Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers, Math. Comput. Simulation, 144 (2018), 60-77.  doi: 10.1016/j.matcom.2017.06.002.  Google Scholar

[14]

F. Dumortier, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, Springer, 1993, 19–73. Google Scholar

[15]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.  Google Scholar

[16]

A. GasullA. Guillamon and V. Mañosa, Phase portrait of Hamiltonian systems with homogeneous nonlinearities, Nonlinear Anal., 42 (2000), 679-707.  doi: 10.1016/S0362-546X(99)00131-5.  Google Scholar

[17]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass, 1951.  Google Scholar

[18]

A. Guillamon and C. Pantazi, Phase portraits of separable Hamiltonian systems, Nonlinear Anal., 74 (2011), 4012-4035.  doi: 10.1016/j.na.2011.03.030.  Google Scholar

[19]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[20]

J. S. W. Lamb and M. Roberts, Reversible equivariant linear systems, J. Differential Equations, 159 (1999), 239-279.  doi: 10.1006/jdeq.1999.3632.  Google Scholar

[21]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[22]

J. LlibreY. P. Martínez and C. Vidal, Phase portraits of linear type centers of polynomial hamiltonian systems with hamiltonian function of degree $5$ of the form $H = H_1(x)+ H_2(y)$, Discrete Contin. Dyn. Syst. Ser., 39 (2019), 75-113.  doi: 10.3934/dcds.2019004.  Google Scholar

[23]

J. LlibreY. P. Martínez and C. Vidal, Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the $y$-axis, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 887-912.  doi: 10.3934/dcdsb.2018047.  Google Scholar

[24]

J. LlibreR. Oliveira and C. Valls, Phase portraits for some symmetric Riccati cubic polynomial differential equations, Topology Appl., 234 (2018), 220-237.  doi: 10.1016/j.topol.2017.11.023.  Google Scholar

[25]

J. Llibre and C. Pessoa, Phase portraits for quadratic homogeneous polynomial vector fields on $\Bbb S^2$, Rend. Circ. Mat. Palermo, 58 (2009), 361-406.  doi: 10.1007/s12215-009-0030-2.  Google Scholar

[26]

N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962.  Google Scholar

[27]

D. A. Neumann, Classification of continuous flows on $2$-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[28]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (i), Journal de Mathématiques Pures et Appliquées, 7 (1881), 375–422. Google Scholar

[29]

B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.  doi: 10.1007/s12346-016-0199-7.  Google Scholar

[30]

J. Reyn, Phase Portraits of Planar Quadratic Systems, vol. 583, Springer, New York, 2007.  Google Scholar

[31]

D. Schlomiuk and X. Zhang, Quadratic differential systems with complex conjugate invariant lines meeting at a finite point, J. Differential Equations, 265 (2018), 3650-3684.  doi: 10.1016/j.jde.2018.05.014.  Google Scholar

[32]

Y. Tian and Y. Zhao, Global phase portraits and bifurcation diagrams for Hamiltonian systems of linear plus quartic homogeneous polynomials symmetric with respect to the $y$-axis, Nonlinear Anal., 192 (2020), 111658, 27pp. doi: 10.1016/j.na.2019.111658.  Google Scholar

[33]

X. Yang, Global phase-portraits of plane homogeneous polynomial vector fields and stability of the origin, Systems Sci. Math. Sci., 10 (1997), 33-40.   Google Scholar

[34]

Y. Ye et al., Theory of Limit Cycles, vol. 66 of Transl. Math. Monographs, Amer. Math. Soc, Providence, RI, 1986.  Google Scholar

Figure 1.  Phase portraits of system (3)
Figure 2.  Bifurcation diagram of system $\left({{\bf{I}}{\bf{.5}}} \right)$
Figure 3.  The local phase portrait of the system (8) at the origin
Figure 4.  Local phase portrait of system $\left({{\bf{I}}{\bf{.1}}} \right)$ on the Poincaré disk
Figure 5.  The local phase portrait of system (13) at origin for $ c = 0 $
Figure 6.  The local phase portrait of the system (14) at the origin
Figure 7.  All the local phase portraits of system $\left({{\bf{I}}{\bf{.2}}} \right)$ on the Poincaré disk
Figure 8.  The local phase portrait of the system (15) at the origin for $ a\leq0 $
Figure 9.  All the local phase portraits of system $\left({{\bf{I}}{\bf{.3}}} \right)$ on the Poincaré disk
Figure 10.  The local phase portraits of system (17) at $ p_1^{\pm} $ for $ a<0 $
Figure 11.  The local phase portraits of system $\left({{\bf{I}}{\bf{.4}}} \right)$ on the Poincaré disk
Figure 12.  The local phase portraits of system $\left({{\bf{I}}{\bf{.5}}} \right)$ with $ \Delta>0 $ on the Poincaré disk
Table 1.  Algebraic classification of system (6)
$b$ $\omega(z)$ = 0ConditionsRoots of $\omega(z)$Linear change Normal forms
$b = 0$ Linear equation $a = 0, c\neq0$No roots $\left(x, y\right)\mapsto\left(c^{-1/3}x, c^{-1/3}y\right)$ $({\bf{I.1}})$
$a\neq0, c\in\mathbb{R}$One root $\left(x, y\right)\mapsto\left(a^{-1/3}x, a^{-1/3}y\right)$ $({\bf{I.2}})$
$b\neq0$ Quadratic equation $a\in\mathbb{R}, c = 0$ $0$ is a root $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.3}})$
$a\in\mathbb{R}, c\neq0, \Delta = 0$Multiple root $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.4}})$
$a\in\mathbb{R}, c\neq0, \Delta\neq0$Two simple roots $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.5}})$
$b$ $\omega(z)$ = 0ConditionsRoots of $\omega(z)$Linear change Normal forms
$b = 0$ Linear equation $a = 0, c\neq0$No roots $\left(x, y\right)\mapsto\left(c^{-1/3}x, c^{-1/3}y\right)$ $({\bf{I.1}})$
$a\neq0, c\in\mathbb{R}$One root $\left(x, y\right)\mapsto\left(a^{-1/3}x, a^{-1/3}y\right)$ $({\bf{I.2}})$
$b\neq0$ Quadratic equation $a\in\mathbb{R}, c = 0$ $0$ is a root $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.3}})$
$a\in\mathbb{R}, c\neq0, \Delta = 0$Multiple root $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.4}})$
$a\in\mathbb{R}, c\neq0, \Delta\neq0$Two simple roots $\left(x, y\right)\mapsto\left(b^{-1/3}x, b^{-1/3}y\right)$ $({\bf{I.5}})$
[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Jaume Llibre, Marzieh Mousavi. Phase portraits of the Higgins–Selkov system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021039

[3]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[4]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[5]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[10]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[12]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[20]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]