doi: 10.3934/dcdsb.2020217

Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate

Y.Y.Tseng Functional Analysis Research Center and School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang, 150025, China

* Corresponding author: Renhao Cui

Received  December 2019 Revised  May 2020 Published  July 2020

Fund Project: Renhao Cui is partially supported by National Natural Science Foundation of China (No.11571364), Natural Science Foundation of Heilongjiang Province (JJ2016ZR0019) and the Fundamental Research Funds for Heilongjiang Provincial Universities (2018-KYYWF-0996)

In this paper, we consider a reaction-diffusion SIS epidemic model with saturated incidence rate in advective heterogeneous environments. The existence of the endemic equilibrium (EE) is established when the basic reproduction number is greater than one. We further investigate the effects of diffusion, advection and saturation on asymptotic profiles of the endemic equilibrium. The individuals concentrate at the downstream end when the advection rate tends to infinity. As the the diffusion rate of the susceptible individuals tends to zero, a certain portion of the susceptible population concentrates at the downstream end, and the remaining portion of the susceptible population distributes in the habitat in a non-homogeneous way; on the other hand, the density of infected population is positive on the entire habitat. The density of the infected vanishes on the habitat for small diffusion rate of infected individuals or the large saturation. The results may provide some implications on disease control and prediction.

Citation: Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020217
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), v+117 pp. doi: 10.1090/memo/1161.  Google Scholar

[3]

H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[5]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[6]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[7]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.  doi: 10.1512/iumj.2008.57.3204.  Google Scholar

[8]

X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[9]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[10]

R. Cui, H. Li, R. Peng and M. Zhou, Concentration behavior of endemic equilibrium for a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism, submitted, (2019), 37 pp. Google Scholar

[11]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[12]

K. Deng, Asymptotic behavior of an SIR reaction-diffusion model with a linear source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5945-5957.  doi: 10.3934/dcdsb.2019114.  Google Scholar

[13]

K. Deng and Y. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.  Google Scholar

[14]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2000.  Google Scholar

[15]

W. DingW. Huang and S. Kansakar, Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304.  doi: 10.3934/dcdsb.2013.18.1291.  Google Scholar

[16]

Z. Du and R. Peng, A priori $L^{\infty}$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.  Google Scholar

[17]

J. GeK. I. KimZ. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, AMS, Providence, RI, 1988.  Google Scholar

[20]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[21]

K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), Art. 112, 28 pp. doi: 10.1007/s00526-017-1207-8.  Google Scholar

[22]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[23]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[24]

K.-Y. LamY. Lou and F. Lutscher, The emergence of range limits in advective environments, SIAM J. Appl. Math., 76 (2016), 641-662.  doi: 10.1137/15M1027887.  Google Scholar

[25]

K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336.  Google Scholar

[26]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[27]

C. LeiF. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499-4517.  doi: 10.3934/dcdsb.2018173.  Google Scholar

[28]

B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), Art. 96, 25 pp. doi: 10.1007/s00033-017-0845-1.  Google Scholar

[29]

H. LiR. Peng and F.-B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[30]

H. LiR. Peng and Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[31]

H. LiR. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 31 (2020), 26-56.  doi: 10.1017/S0956792518000463.  Google Scholar

[32]

G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary $p$ in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400-1406.  doi: 10.1137/S003614100343651X.  Google Scholar

[33]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[34]

Y. LouD. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.  Google Scholar

[35]

Y. LouX.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), 47-82.  doi: 10.1016/j.matpur.2018.06.010.  Google Scholar

[36]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.  Google Scholar

[37]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[38]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[39]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[40]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[41]

R. Peng and Y. Wu, Global $L^\infty$-bounds and long-time behavior of a diffusive epidemic system in heterogeneous environment, preprint (arXiv: 1906.11699). Google Scholar

[42]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[43]

R. PengG. Zhang and M. Zhou, Asymptotic behavior of the principal eigenvalue of a second order linear elliptic operator with small/large diffusion coefficient, SIAM J. Math. Anal., 51 (2019), 4724-4753.  doi: 10.1137/18M1217577.  Google Scholar

[44]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[45]

R. Peng and M. Zhou, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second order elliptic operator, Indiana Univ. Math. J., 67 (2018), 2523-2568.  doi: 10.1512/iumj.2018.67.7547.  Google Scholar

[46]

X. Sun and R. Cui, Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogenous environment, J. Math. Anal. Appl., 490 (2020), 124212. doi: 10.1016/j.jmaa.2020.124212.  Google Scholar

[47]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.   Google Scholar

[48]

Y. Tong and C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.  Google Scholar

[49]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469.   Google Scholar

[50]

O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment, Nonl. Anal. RWA, 13 (2012), 1730-1748.  doi: 10.1016/j.nonrwa.2011.12.004.  Google Scholar

[51]

O. Vasilyeva and F. Lutscher, Competition in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958.   Google Scholar

[52]

B.-G WangW.-T. Li and Z.-C. Wang, A reaction-diffusion SIS epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 66 (2015), 3085-3108.  doi: 10.1007/s00033-015-0585-z.  Google Scholar

[53]

Y. WangZ. Wang and C. Lei, Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate, Math. Biosci. Eng., 16 (2019), 3885-3913.  doi: 10.3934/mbe.2019192.  Google Scholar

[54]

X. WenJ. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.  Google Scholar

[55]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[56]

J. Zhang and R. Cui, Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment, Nonlinear Anal. Real World Appl., 55 (2020), 103115. doi: 10.1016/j.nonrwa.2020.103115.  Google Scholar

[57]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canad. Appl. Math. Quart., 3 (1995), 473-495.   Google Scholar

[58]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[59]

P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.  Google Scholar

[60]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

[61]

P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176–4198. doi: 10.1016/j.jde.2017.12.005.  Google Scholar

[62]

P. Zhou and X.-Q. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 30 (2018), 613-636.  doi: 10.1007/s10884-016-9562-2.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), v+117 pp. doi: 10.1090/memo/1161.  Google Scholar

[3]

H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[5]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[6]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[7]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.  doi: 10.1512/iumj.2008.57.3204.  Google Scholar

[8]

X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[9]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[10]

R. Cui, H. Li, R. Peng and M. Zhou, Concentration behavior of endemic equilibrium for a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism, submitted, (2019), 37 pp. Google Scholar

[11]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[12]

K. Deng, Asymptotic behavior of an SIR reaction-diffusion model with a linear source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5945-5957.  doi: 10.3934/dcdsb.2019114.  Google Scholar

[13]

K. Deng and Y. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.  Google Scholar

[14]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2000.  Google Scholar

[15]

W. DingW. Huang and S. Kansakar, Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304.  doi: 10.3934/dcdsb.2013.18.1291.  Google Scholar

[16]

Z. Du and R. Peng, A priori $L^{\infty}$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.  Google Scholar

[17]

J. GeK. I. KimZ. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, AMS, Providence, RI, 1988.  Google Scholar

[20]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[21]

K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), Art. 112, 28 pp. doi: 10.1007/s00526-017-1207-8.  Google Scholar

[22]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[23]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[24]

K.-Y. LamY. Lou and F. Lutscher, The emergence of range limits in advective environments, SIAM J. Appl. Math., 76 (2016), 641-662.  doi: 10.1137/15M1027887.  Google Scholar

[25]

K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212.  doi: 10.1080/17513758.2014.969336.  Google Scholar

[26]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[27]

C. LeiF. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499-4517.  doi: 10.3934/dcdsb.2018173.  Google Scholar

[28]

B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), Art. 96, 25 pp. doi: 10.1007/s00033-017-0845-1.  Google Scholar

[29]

H. LiR. Peng and F.-B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[30]

H. LiR. Peng and Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[31]

H. LiR. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 31 (2020), 26-56.  doi: 10.1017/S0956792518000463.  Google Scholar

[32]

G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary $p$ in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400-1406.  doi: 10.1137/S003614100343651X.  Google Scholar

[33]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[34]

Y. LouD. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.  Google Scholar

[35]

Y. LouX.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), 47-82.  doi: 10.1016/j.matpur.2018.06.010.  Google Scholar

[36]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.  Google Scholar

[37]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[38]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[39]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[40]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[41]

R. Peng and Y. Wu, Global $L^\infty$-bounds and long-time behavior of a diffusive epidemic system in heterogeneous environment, preprint (arXiv: 1906.11699). Google Scholar

[42]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[43]

R. PengG. Zhang and M. Zhou, Asymptotic behavior of the principal eigenvalue of a second order linear elliptic operator with small/large diffusion coefficient, SIAM J. Math. Anal., 51 (2019), 4724-4753.  doi: 10.1137/18M1217577.  Google Scholar

[44]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[45]

R. Peng and M. Zhou, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second order elliptic operator, Indiana Univ. Math. J., 67 (2018), 2523-2568.  doi: 10.1512/iumj.2018.67.7547.  Google Scholar

[46]

X. Sun and R. Cui, Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogenous environment, J. Math. Anal. Appl., 490 (2020), 124212. doi: 10.1016/j.jmaa.2020.124212.  Google Scholar

[47]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.   Google Scholar

[48]

Y. Tong and C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.  Google Scholar

[49]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469.   Google Scholar

[50]

O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment, Nonl. Anal. RWA, 13 (2012), 1730-1748.  doi: 10.1016/j.nonrwa.2011.12.004.  Google Scholar

[51]

O. Vasilyeva and F. Lutscher, Competition in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958.   Google Scholar

[52]

B.-G WangW.-T. Li and Z.-C. Wang, A reaction-diffusion SIS epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 66 (2015), 3085-3108.  doi: 10.1007/s00033-015-0585-z.  Google Scholar

[53]

Y. WangZ. Wang and C. Lei, Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate, Math. Biosci. Eng., 16 (2019), 3885-3913.  doi: 10.3934/mbe.2019192.  Google Scholar

[54]

X. WenJ. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.  Google Scholar

[55]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[56]

J. Zhang and R. Cui, Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment, Nonlinear Anal. Real World Appl., 55 (2020), 103115. doi: 10.1016/j.nonrwa.2020.103115.  Google Scholar

[57]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canad. Appl. Math. Quart., 3 (1995), 473-495.   Google Scholar

[58]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[59]

P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.  Google Scholar

[60]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

[61]

P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176–4198. doi: 10.1016/j.jde.2017.12.005.  Google Scholar

[62]

P. Zhou and X.-Q. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 30 (2018), 613-636.  doi: 10.1007/s10884-016-9562-2.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[3]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[4]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[5]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[6]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[7]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[8]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[12]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[13]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[14]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[15]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[16]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[17]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[18]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (78)
  • HTML views (237)
  • Cited by (1)

Other articles
by authors

[Back to Top]