doi: 10.3934/dcdsb.2020219

The impact of toxins on competition dynamics of three species in a polluted aquatic environment

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China

2. 

School of Mathematical and Statistical Sciences, Southwest University, Chongqing 400715, China

3. 

School of Mathematical and Statistical Sciences, Hubei University of Science and Technology, Xianning 437100, China

*Corresponding author: Qihua Huang

Received  February 2020 Revised  May 2020 Published  July 2020

Fund Project: The second author is supported by the NSF of China (11871235). The third author is supported by the NSF of China (11871060), the Venture and Innovation Support Program for Chongqing Overseas Returnees (7820100158), the Fundamental Research Funds for the Central Universities (XDJK2018B031), and the faculty startup fund from Southwest University (20710948)

Accurately assessing the risks of toxins in polluted ecosystems and finding factors that determine population persistence and extirpation are important from both environmental and conservation perspectives. In this paper, we develop and study a toxin-mediated competition model for three species that live in the same polluted aquatic environment and compete for the same resources. Analytical analysis of positive invariance, existence and stability of equilibria, sensitivity of equilibria to toxin are presented. Bifurcation analysis is used to understand how the environmental toxins, plus distinct vulnerabilities of three species to toxins, affect the competition outcomes. Our results reveal that while high concentrations lead to extirpation of all species, sublethal levels of toxins affect competition outcomes in many counterintuitive ways, which include boosting coexistence of species by reducing the abundance of the predominant species, inducing many different types of bistability and even tristability, generating and reducing population oscillations, and exchanging roles of winner and loser in competition. The findings in this work provide a sound theoretical foundation for understanding and assessing population or community effects of toxicity.

Citation: Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020219
References:
[1]

S. M. BartellR. A. PastorokH. R. AkcakayaH. ReganS. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.  doi: 10.1080/713610016.  Google Scholar

[2]

J. A. Camargo and Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.  doi: 10.1016/j.envint.2006.05.002.  Google Scholar

[3]

W. H. Clements and C. Kotalik, Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.  doi: 10.1086/685085.  Google Scholar

[4]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

J. W. FleegerK. R. Carman and R. M. Nisbet, Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.  doi: 10.1016/S0048-9697(03)00141-4.  Google Scholar

[7]

H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.  doi: 10.1007/BF00168004.  Google Scholar

[8]

M. Gyllenberg and P. Yan, On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.  doi: 10.3934/dcdsb.2009.11.347.  Google Scholar

[9]

T. G. HallamC. E. Clark and G. S. Jordan, Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.  doi: 10.1007/BF00275908.  Google Scholar

[10]

T. G. HallamC. E. Clark and R. R. Lassiter, Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[11]

T. G. Hallam and J. T. de Luna, Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[12]

T. Hanazato, Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.  doi: 10.1016/S0269-7491(00)00110-X.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[14]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[15]

Q. HuangL. ParshotamH. WangC. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.  doi: 10.1016/j.jtbi.2013.05.018.  Google Scholar

[16]

Q. HuangH. Wang and M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.  doi: 10.1016/j.jtbi.2015.04.019.  Google Scholar

[17]

J. Jiang and L. Niu, On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.  doi: 10.1016/j.jde.2017.08.022.  Google Scholar

[18]

G. LanC. Wei and S. Zhang, Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.  doi: 10.1016/j.physa.2019.01.096.  Google Scholar

[19]

Z. Lu and Y. Luo, Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.  doi: 10.1016/S0898-1221(02)00129-3.  Google Scholar

[20]

Z. MaG. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.  doi: 10.1016/0025-5564(90)90103-6.  Google Scholar

[21]

A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74. doi: 10.1002/ieam.132.  Google Scholar

[22]

K. Murakami, A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.  doi: 10.1016/j.jmaa.2017.07.076.  Google Scholar

[23]

K. Murakami, A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.  doi: 10.1016/j.mbs.2018.12.006.  Google Scholar

[24]

R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321.  Google Scholar

[25]

C. Shan and Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.  doi: 10.1007/s00285-018-1290-2.  Google Scholar

[26]

A. J. Smith and C. P. Tran, A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.  doi: 10.1899/09-076.1.  Google Scholar

[27]

D. M. ThomasT. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.  doi: 10.1016/0025-5564(95)00091-7.  Google Scholar

[28]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[29]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[30]

S. YangF. XuF. WuS. Wang and B. Zheng, Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.  doi: 10.1016/j.scitotenv.2013.09.094.  Google Scholar

[31]

P. YuM. Han and D. Xiao, Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.  doi: 10.1016/j.jmaa.2015.12.002.  Google Scholar

[32]

T. F. Zabel and S. Cole, The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.  doi: 10.1111/j.1747-6593.1999.tb01082.x.  Google Scholar

[33]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364  Google Scholar

[34]

E. C. Zeeman and M. L. Zeeman, An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[35]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

[36]

T. ZhangH. Jin and H. Zhu, Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.  doi: 10.1016/0045-6535(96)00110-5.  Google Scholar

show all references

References:
[1]

S. M. BartellR. A. PastorokH. R. AkcakayaH. ReganS. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.  doi: 10.1080/713610016.  Google Scholar

[2]

J. A. Camargo and Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.  doi: 10.1016/j.envint.2006.05.002.  Google Scholar

[3]

W. H. Clements and C. Kotalik, Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.  doi: 10.1086/685085.  Google Scholar

[4]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

J. W. FleegerK. R. Carman and R. M. Nisbet, Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.  doi: 10.1016/S0048-9697(03)00141-4.  Google Scholar

[7]

H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.  doi: 10.1007/BF00168004.  Google Scholar

[8]

M. Gyllenberg and P. Yan, On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.  doi: 10.3934/dcdsb.2009.11.347.  Google Scholar

[9]

T. G. HallamC. E. Clark and G. S. Jordan, Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.  doi: 10.1007/BF00275908.  Google Scholar

[10]

T. G. HallamC. E. Clark and R. R. Lassiter, Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[11]

T. G. Hallam and J. T. de Luna, Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[12]

T. Hanazato, Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.  doi: 10.1016/S0269-7491(00)00110-X.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[14]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[15]

Q. HuangL. ParshotamH. WangC. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.  doi: 10.1016/j.jtbi.2013.05.018.  Google Scholar

[16]

Q. HuangH. Wang and M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.  doi: 10.1016/j.jtbi.2015.04.019.  Google Scholar

[17]

J. Jiang and L. Niu, On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.  doi: 10.1016/j.jde.2017.08.022.  Google Scholar

[18]

G. LanC. Wei and S. Zhang, Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.  doi: 10.1016/j.physa.2019.01.096.  Google Scholar

[19]

Z. Lu and Y. Luo, Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.  doi: 10.1016/S0898-1221(02)00129-3.  Google Scholar

[20]

Z. MaG. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.  doi: 10.1016/0025-5564(90)90103-6.  Google Scholar

[21]

A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74. doi: 10.1002/ieam.132.  Google Scholar

[22]

K. Murakami, A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.  doi: 10.1016/j.jmaa.2017.07.076.  Google Scholar

[23]

K. Murakami, A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.  doi: 10.1016/j.mbs.2018.12.006.  Google Scholar

[24]

R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321.  Google Scholar

[25]

C. Shan and Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.  doi: 10.1007/s00285-018-1290-2.  Google Scholar

[26]

A. J. Smith and C. P. Tran, A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.  doi: 10.1899/09-076.1.  Google Scholar

[27]

D. M. ThomasT. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.  doi: 10.1016/0025-5564(95)00091-7.  Google Scholar

[28]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[29]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[30]

S. YangF. XuF. WuS. Wang and B. Zheng, Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.  doi: 10.1016/j.scitotenv.2013.09.094.  Google Scholar

[31]

P. YuM. Han and D. Xiao, Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.  doi: 10.1016/j.jmaa.2015.12.002.  Google Scholar

[32]

T. F. Zabel and S. Cole, The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.  doi: 10.1111/j.1747-6593.1999.tb01082.x.  Google Scholar

[33]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364  Google Scholar

[34]

E. C. Zeeman and M. L. Zeeman, An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[35]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

[36]

T. ZhangH. Jin and H. Zhu, Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.  doi: 10.1016/0045-6535(96)00110-5.  Google Scholar

Figure 1.  The illustration of Theorem 3.7
Figure 2.  Bifurcation diagrams with respect to toxin level $ T $ for the case where species-2 only equilibrium $ E_2 $ is globally asymptotically stable when $ T = 0 $. Parameters: $ b_1 = 1, \ b_2 = 1.06, \ b_3 = 1.13, \ p_1 = p_2 = p_3 = k_1 = k_2 = k_3 = 1, \ m_1 = 0.44, \ m_2 = 0.5, \ m_3 = 0.56, \ c_{12} = 1.13, \ c_{13} = 1.19, \ c_{21} = 1.06, \ c_{23} = 0.88, \ c_{31} = 0.75, \ c_{32} = 1.24 $. Here $ T_1^* = 0.28 $, $ T_2^*\approx0.27 $, $ T_3^*\approx0.27 $
Figure 3.  (a) The Hopf bifurcation diagram corresponding to Fig. 2; (b) Limit cycle for $ T = 0.18069 $ in (a); (c) The time series diagram corresponding to (b); (d) The time series diagram of heteroclinic loop for $ T = 0.1801 $; (e) The phase portrait corresponding to (d). The other parameters are the same as those in Fig. 2
Figure 4.  Bifurcation diagrams with respect to toxin level $ T $ for the case where both species 2-only equilibrium $ E_2 $ and species 3-only equilibrium $ E_3 $ are locally asymptotically stable when $ T = 0 $. Parameters: $ c_{13} = 1.15, \ c_{23} = 1.19, \ c_{32} = 1.13 $, the other parameters and the values of $ T_i^*\ (i = 1, \ 2, \ 3) $ are the same as those in Fig. 2
Figure 5.  Bifurcation diagrams with respect to toxin level $ T $ for the case where the coexistence equilibrium $ E^* $ is globally asymptotically stable when $ T = 0 $. Part of panel (a) is enlarged by panel (b) and part of panel (c) is enlarged by panel (d). Parameters: $ b_1 = 1, \ b_2 = 0.97, \ b_3 = 0.96, \ p_1 = p_2 = p_3 = k_1 = k_2 = k_3 = 1, \ m_1 = 0.52, \ m_2 = 0.47, \ m_3 = 0.53, \ c_{12} = 0.11, \ c_{13} = 0.16, \ c_{21} = 0.16, \ c_{23} = 0.21, \ c_{31} = 0.15, \ c_{32} = 0.22 $. Here $ T_1^* = 0.24 $, $ T_2^*\approx0.25 $, $ T_3^*\approx0.22 $
Figure 6.  Bifurcation diagrams with respect to toxin level $ T $, where the parameters are the same to those in Fig. 2 except that $ p_2 = 0.5, \ p_3 = 0.2 $. Here, $ T_1^* = 0.28 $, $ T_2^*\approx 0.54 $, $ T_3^*\approx 1.34 $
Figure 7.  Bifurcation diagrams with respect to toxin level $ T $, where the parameters are similar to those in Fig. 2 except that $ p_2 = 2, \ p_3 = 2.5 $. Here $ T_1^* = 0.28 $, $ T_2^*\approx0.14 $, $ T_3^*\approx 0.11 $
Table 1.  The asymptotic dynamics on $ \Sigma $ of system (8). $ \bullet $ signifies an attractive equilibrium on $ \Sigma $, $ \circ $ signifies a repellent equilibrium on $ \Sigma $, the intersection of its hyperbolic manifolds signifies a saddle on $ \Sigma $
[1]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[2]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[3]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[4]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[5]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[6]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[7]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[8]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[9]

Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066

[10]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[11]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[12]

Ya Li, Z. Feng. Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences & Engineering, 2010, 7 (1) : 149-169. doi: 10.3934/mbe.2010.7.149

[13]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[14]

Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209

[15]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[16]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[17]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[18]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[19]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[20]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020228

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]