
-
Previous Article
An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment
- DCDS-B Home
- This Issue
-
Next Article
The Keller-Segel system with logistic growth and signal-dependent motility
The impact of toxins on competition dynamics of three species in a polluted aquatic environment
1. | School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China |
2. | School of Mathematical and Statistical Sciences, Southwest University, Chongqing 400715, China |
3. | School of Mathematical and Statistical Sciences, Hubei University of Science and Technology, Xianning 437100, China |
Accurately assessing the risks of toxins in polluted ecosystems and finding factors that determine population persistence and extirpation are important from both environmental and conservation perspectives. In this paper, we develop and study a toxin-mediated competition model for three species that live in the same polluted aquatic environment and compete for the same resources. Analytical analysis of positive invariance, existence and stability of equilibria, sensitivity of equilibria to toxin are presented. Bifurcation analysis is used to understand how the environmental toxins, plus distinct vulnerabilities of three species to toxins, affect the competition outcomes. Our results reveal that while high concentrations lead to extirpation of all species, sublethal levels of toxins affect competition outcomes in many counterintuitive ways, which include boosting coexistence of species by reducing the abundance of the predominant species, inducing many different types of bistability and even tristability, generating and reducing population oscillations, and exchanging roles of winner and loser in competition. The findings in this work provide a sound theoretical foundation for understanding and assessing population or community effects of toxicity.
References:
[1] |
S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and C. Mackay,
Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.
doi: 10.1080/713610016. |
[2] |
J. A. Camargo and Á. Alonso,
Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.
doi: 10.1016/j.envint.2006.05.002. |
[3] |
W. H. Clements and C. Kotalik,
Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.
doi: 10.1086/685085. |
[4] |
N. Fenichel,
Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.
doi: 10.1512/iumj.1972.21.21017. |
[5] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[6] |
J. W. Fleeger, K. R. Carman and R. M. Nisbet,
Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.
doi: 10.1016/S0048-9697(03)00141-4. |
[7] |
H. I. Freedman and J. B. Shukla,
Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.
doi: 10.1007/BF00168004. |
[8] |
M. Gyllenberg and P. Yan,
On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.
doi: 10.3934/dcdsb.2009.11.347. |
[9] |
T. G. Hallam, C. E. Clark and G. S. Jordan,
Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.
doi: 10.1007/BF00275908. |
[10] |
T. G. Hallam, C. E. Clark and R. R. Lassiter,
Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.
doi: 10.1016/0304-3800(83)90019-4. |
[11] |
T. G. Hallam and J. T. de Luna,
Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.
doi: 10.1016/S0022-5193(84)80090-9. |
[12] |
T. Hanazato,
Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.
doi: 10.1016/S0269-7491(00)00110-X. |
[13] |
M. W. Hirsch,
Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.
doi: 10.1088/0951-7715/1/1/003. |
[14] |
J. Hofbauer and J. W.-H. So,
Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.
doi: 10.1016/0893-9659(94)90095-7. |
[15] |
Q. Huang, L. Parshotam, H. Wang, C. Bampfylde and M. A. Lewis,
A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.
doi: 10.1016/j.jtbi.2013.05.018. |
[16] |
Q. Huang, H. Wang and M. A. Lewis,
The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.
doi: 10.1016/j.jtbi.2015.04.019. |
[17] |
J. Jiang and L. Niu,
On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.
doi: 10.1016/j.jde.2017.08.022. |
[18] |
G. Lan, C. Wei and S. Zhang,
Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.
doi: 10.1016/j.physa.2019.01.096. |
[19] |
Z. Lu and Y. Luo,
Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.
doi: 10.1016/S0898-1221(02)00129-3. |
[20] |
Z. Ma, G. Cui and W. Wang,
Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.
doi: 10.1016/0025-5564(90)90103-6. |
[21] |
A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74.
doi: 10.1002/ieam.132. |
[22] |
K. Murakami,
A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.
doi: 10.1016/j.jmaa.2017.07.076. |
[23] |
K. Murakami,
A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.
doi: 10.1016/j.mbs.2018.12.006. |
[24] |
R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001.
doi: 10.1201/9781420032321. |
[25] |
C. Shan and Q. Huang,
Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.
doi: 10.1007/s00285-018-1290-2. |
[26] |
A. J. Smith and C. P. Tran,
A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.
doi: 10.1899/09-076.1. |
[27] |
D. M. Thomas, T. W. Snell and S. M. Jaffar,
A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.
doi: 10.1016/0025-5564(95)00091-7. |
[28] |
P. van den Driessche and M. L. Zeeman,
Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[29] |
D. Xiao and W. Li,
Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.
doi: 10.1006/jdeq.1999.3729. |
[30] |
S. Yang, F. Xu, F. Wu, S. Wang and B. Zheng,
Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.
doi: 10.1016/j.scitotenv.2013.09.094. |
[31] |
P. Yu, M. Han and D. Xiao,
Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.
doi: 10.1016/j.jmaa.2015.12.002. |
[32] |
T. F. Zabel and S. Cole,
The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.
doi: 10.1111/j.1747-6593.1999.tb01082.x. |
[33] |
E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364 |
[34] |
E. C. Zeeman and M. L. Zeeman,
An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.
doi: 10.1088/0951-7715/15/6/312. |
[35] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |
[36] |
T. Zhang, H. Jin and H. Zhu,
Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.
doi: 10.1016/0045-6535(96)00110-5. |
show all references
References:
[1] |
S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson and C. Mackay,
Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.
doi: 10.1080/713610016. |
[2] |
J. A. Camargo and Á. Alonso,
Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.
doi: 10.1016/j.envint.2006.05.002. |
[3] |
W. H. Clements and C. Kotalik,
Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.
doi: 10.1086/685085. |
[4] |
N. Fenichel,
Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.
doi: 10.1512/iumj.1972.21.21017. |
[5] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[6] |
J. W. Fleeger, K. R. Carman and R. M. Nisbet,
Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.
doi: 10.1016/S0048-9697(03)00141-4. |
[7] |
H. I. Freedman and J. B. Shukla,
Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.
doi: 10.1007/BF00168004. |
[8] |
M. Gyllenberg and P. Yan,
On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.
doi: 10.3934/dcdsb.2009.11.347. |
[9] |
T. G. Hallam, C. E. Clark and G. S. Jordan,
Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.
doi: 10.1007/BF00275908. |
[10] |
T. G. Hallam, C. E. Clark and R. R. Lassiter,
Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.
doi: 10.1016/0304-3800(83)90019-4. |
[11] |
T. G. Hallam and J. T. de Luna,
Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.
doi: 10.1016/S0022-5193(84)80090-9. |
[12] |
T. Hanazato,
Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.
doi: 10.1016/S0269-7491(00)00110-X. |
[13] |
M. W. Hirsch,
Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.
doi: 10.1088/0951-7715/1/1/003. |
[14] |
J. Hofbauer and J. W.-H. So,
Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.
doi: 10.1016/0893-9659(94)90095-7. |
[15] |
Q. Huang, L. Parshotam, H. Wang, C. Bampfylde and M. A. Lewis,
A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.
doi: 10.1016/j.jtbi.2013.05.018. |
[16] |
Q. Huang, H. Wang and M. A. Lewis,
The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.
doi: 10.1016/j.jtbi.2015.04.019. |
[17] |
J. Jiang and L. Niu,
On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.
doi: 10.1016/j.jde.2017.08.022. |
[18] |
G. Lan, C. Wei and S. Zhang,
Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.
doi: 10.1016/j.physa.2019.01.096. |
[19] |
Z. Lu and Y. Luo,
Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.
doi: 10.1016/S0898-1221(02)00129-3. |
[20] |
Z. Ma, G. Cui and W. Wang,
Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.
doi: 10.1016/0025-5564(90)90103-6. |
[21] |
A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74.
doi: 10.1002/ieam.132. |
[22] |
K. Murakami,
A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.
doi: 10.1016/j.jmaa.2017.07.076. |
[23] |
K. Murakami,
A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.
doi: 10.1016/j.mbs.2018.12.006. |
[24] |
R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001.
doi: 10.1201/9781420032321. |
[25] |
C. Shan and Q. Huang,
Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.
doi: 10.1007/s00285-018-1290-2. |
[26] |
A. J. Smith and C. P. Tran,
A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.
doi: 10.1899/09-076.1. |
[27] |
D. M. Thomas, T. W. Snell and S. M. Jaffar,
A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.
doi: 10.1016/0025-5564(95)00091-7. |
[28] |
P. van den Driessche and M. L. Zeeman,
Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[29] |
D. Xiao and W. Li,
Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.
doi: 10.1006/jdeq.1999.3729. |
[30] |
S. Yang, F. Xu, F. Wu, S. Wang and B. Zheng,
Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.
doi: 10.1016/j.scitotenv.2013.09.094. |
[31] |
P. Yu, M. Han and D. Xiao,
Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.
doi: 10.1016/j.jmaa.2015.12.002. |
[32] |
T. F. Zabel and S. Cole,
The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.
doi: 10.1111/j.1747-6593.1999.tb01082.x. |
[33] |
E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364 |
[34] |
E. C. Zeeman and M. L. Zeeman,
An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.
doi: 10.1088/0951-7715/15/6/312. |
[35] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |
[36] |
T. Zhang, H. Jin and H. Zhu,
Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.
doi: 10.1016/0045-6535(96)00110-5. |







![]() |
![]() |
[1] |
Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123 |
[2] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[3] |
Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481 |
[4] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[5] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021097 |
[6] |
Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683 |
[7] |
Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057 |
[8] |
M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141 |
[9] |
Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1 |
[10] |
Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032 |
[11] |
Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066 |
[12] |
Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012 |
[13] |
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603 |
[14] |
Ya Li, Z. Feng. Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences & Engineering, 2010, 7 (1) : 149-169. doi: 10.3934/mbe.2010.7.149 |
[15] |
Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691 |
[16] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[17] |
Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699 |
[18] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[19] |
Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209 |
[20] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]