
-
Previous Article
Time-domain analysis of forward obstacle scattering for elastic wave
- DCDS-B Home
- This Issue
-
Next Article
High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation
A mathematical model to restore water quality in urban lakes using Phoslock
1. | Department of Mathematics, University of Kalyani, Kalyani - 741235, India |
2. | Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India |
3. | Department of Mathematics, Presidency University, Kolkata - 700073, India |
4. | Science and Mathematics Faculty, Arizona State University Mesa, AZ 85212, USA |
Urban lakes are the life lines for the population residing in the city. Excessive amounts of phosphate entering water courses through household discharges is one of the main causes of deterioration of water quality in these lakes because of the way it drives algal productivity and undesirable changes in the balance of aquatic life. The ability to remove biologically available phosphorus in a lake is therefore a major step towards improving water quality. By removing phosphate from the water column using Phoslock essentially deprives algae and its proliferation. In view of this, we develop a mathematical model to investigate whether the application of Phoslock would significantly reduce the bio-availability of phosphate in the water column. We consider phosphorus, algae, detritus and Phoslock as dynamical variables. In the modeling process, the introduction rate of Phoslock is assumed to be proportional to the concentration of phosphorus in the lake. Further, we consider a discrete time delay which accounts for the time lag involved in the application of Phoslock. Moreover, we investigate behavior of the system by assuming the application rate of Phoslock as a periodic function of time. Our results evoke that Phoslock essentially reduces the concentration of phosphorus and density of algae, and plays crucial role in restoring the quality of water in urban lakes. We observe that for the gradual increase in the magnitude of the delay involved in application of Phoslock, the autonomous system develops limit cycle oscillations through a Hopf-bifurcation while the corresponding nonautonomous system shows chaotic dynamics through quasi-periodic oscillations.
References:
[1] |
An overview of Phoslock and use in aquatic environments, https://www.sepro.com/documents/Phoslock/TechInfo/Phoslock%20Technical%20Bulletin.pdf. Google Scholar |
[2] |
A. M. Beeton and W. T. Edmonsdon,
The eutrophication problem, J. Fish. Res. Bd. Canada, 29 (1972), 673-682.
doi: 10.1139/f72-113. |
[3] |
J. M. Beman, K. R. Arrigo and P. A. Matson, Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean, Nature, 434 (2005), 211. Google Scholar |
[4] |
G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th edn., John Wiley & Sons, Inc. New York, 1989. |
[5] |
W. M. Bishop, T. McNabb, I. Cormican, B. E. Willis and S. Hyde, Operational evaluation of Phoslock phosphorus locking technology in Laguna Niguel Lake, California, Water Air Soil Pollut., 225 (2014), 2018.
doi: 10.1007/s11270-014-2018-6. |
[6] |
D. F. Boesch, Harmful Algal Bloom in Coastal Waters: Options for Prevention, Control and Mitigation, 10, US Department of Commerce, National Oceanic and Atmospheric Administration, Coastal Ocean Office, 1997. Google Scholar |
[7] |
G. L. Bowie, W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, S. A. Gherini, C. E. Chamberlin and T. O. Barnwell, Rates, constants, and kinetics formulations in surface water quality modeling, EPA, 600 (1985), 3-85. Google Scholar |
[8] |
S. R. Carpenter,
Phosphorus control is critical to mitigating eutrophication, Proc. Nat. Acad. Sci. USA, 105 (2008), 11039-11040.
doi: 10.1073/pnas.0806112105. |
[9] |
S. Chakraborty, P. K. Tiwari, A. K. Misra and J. Chattopadhyay,
Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Biosci., 264 (2015), 94-100.
doi: 10.1016/j.mbs.2015.03.010. |
[10] |
S. Chakraborty, P. K. Tiwari, S. K. Sasmal, A. K. Misra and J. Chattopadhyay,
Effects of fertilizers used in agricultural fields on algal blooms, Eur. Phys. J. Spec. Top., 226 (2017), 2119-2133.
doi: 10.1140/epjst/e2017-70031-7. |
[11] |
D. L. Correll,
The role of phosphorus in the eutrophication of receiving waters: A review, J. Enviro. Qual., 27 (1998), 261-266.
doi: 10.2134/jeq1998.00472425002700020004x. |
[12] |
M. Dokulil, W. Chen and Q. Cai, Anthropogenic impacts to large lakes in china: The Taihu example, Aquat. Ecosyst. Health Manag., 3 (2000), 81-94. Google Scholar |
[13] |
S. Egemose, K. Reitzel, F. Ø. Andersen and M. R. Flindt,
Chemical lake restoration products: Sediment stability and phosphorus dynamics, Environ. Sci. Technol., 44 (2010), 985-991.
doi: 10.1021/es903260y. |
[14] |
T. S. Epe, K. Finsterle and S. Yasseri,
Nine years of phosphorus management with lanthanum modified bentonite (Phoslock) in a eutrophic, shallow swimming lake in Germany, Lake Reserv. Manage., 33 (2017), 119-129.
doi: 10.1080/10402381.2016.1263693. |
[15] |
M. Fink, myAD: fast automatic differentiation code in Matlab, (2006) https://se.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab. Google Scholar |
[16] |
M. Fink, J. J. Batzel and H. Tran,
A respiratory system model: Parameter estimation and sensitivity analysis, Cardiovasc. Eng., 8 (2008), 120-134.
doi: 10.1007/s10558-007-9051-7. |
[17] |
P. J. S. Franks,
Models of harmful algal blooms, Limnol. Oceanogr., 42 (1997), 1273-1282.
doi: 10.4319/lo.1997.42.5_part_2.1273. |
[18] |
K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Mathematics and its applications. 74, Kluwer Academic Pub. Dordrecht, 1992. Google Scholar |
[19] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[20] |
R. D. Gulati, L. M. D. Pires and E. Van Donk,
Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures, Limnologica, 38 (2008), 233-247.
doi: 10.1016/j.limno.2008.05.008. |
[21] |
J. K. Hale, Functional Differential Equations, Springer Berlin Heidelbergi, 1971. Google Scholar |
[22] |
J. K. Hale, L. Verduyn and M. Sjoerd, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[23] |
A. D. Hasler,
Eutrophication of lakes by domestic drainage, Ecology, 28 (1947), 383-395.
doi: 10.2307/1931228. |
[24] |
A. Hastings and T. Powell,
Chaos in a three-species food chain, Ecology, 72 (1991), 896-903.
doi: 10.2307/1940591. |
[25] |
K. E. Havens, T. L. East, S. J. Hwang, A. J. Rodusky, B. Sharfstein and A. D. Steinman, Algal responses to experimental nutrient addition in the littooral community of a subtropical lake, Freshwater Biol, 42 (1999), 329-344. Google Scholar |
[26] |
D.-W. Huang, H.-L. Wang, J.-F. Feng and Z.-W. Zhu,
Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, Appl. Math. Model., 32 (2008), 1318-1326.
doi: 10.1016/j.apm.2007.04.006. |
[27] |
A. Huppert, B. Blasius and L. Stone,
A model of phytoplankton blooms, Am. Nat., 159 (2002), 156-171.
doi: 10.1086/324789. |
[28] |
H. P. Jarve, C. Neal and P. J. A. Withers,
Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?, Sci. Total Environ., 360 (2006), 246-253.
doi: 10.1016/j.scitotenv.2005.08.038. |
[29] |
R. A. Jones and G. F. Lee,
Recent advances in assessing impact of phosphorus loads on eutrophication related water quality, Water Res., 16 (1982), 503-515.
doi: 10.1016/0043-1354(82)90069-0. |
[30] |
S. E. Jørgenson,
A eutrophication model for a lake, Ecol. Model., 2 (1976), 147-165.
doi: 10.1016/0304-3800(76)90030-2. |
[31] |
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York/Basel, 1989. |
[32] |
S. T. Larned, Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae, Marine Biol., 132 (1998), 409-421. Google Scholar |
[33] |
J. W. G. Lund, Eutrophiocation, Proc. R. Soc. Lond. B, 180 (1972), 371-382. Google Scholar |
[34] |
M. Lürling and Y. Tolman,
Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna, Water Res., 44 (2010), 309-319.
doi: 10.1016/j.watres.2009.09.034. |
[35] |
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology, CRC, 2008. |
[36] |
S. Meis, B. M. Spears, S. C. Maberly and R. G. Perkins,
Assessing the mode of action of Phoslock in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK), Water Res., 47 (2013), 4460-4473.
doi: 10.1016/j.watres.2013.05.017. |
[37] |
A. K. Misra,
Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes, Nonlinear Anal. Model. Cont., 15 (2010), 185-198.
doi: 10.15388/NA.2010.15.2.14353. |
[38] |
A. K. Misra, Modeling the depletion of dissolved oxygen in a lake by taking Holling type-III interaction, Appl. Math. Comp., 217 (2011), 8367-8376. Google Scholar |
[39] |
A. K. Misra, R. K. Singh, P. K. Tiwari, S. Khajanchi and Y. Kang,
Dynamics of algae blooming: Effects of budget allocation and time delay, Nonlinear Dyn., 100 (2020), 1779-1807.
doi: 10.1007/s11071-020-05551-4. |
[40] |
A. K. Misra, P. K. Tiwari and P. Chandra, Modeling the control of algal bloom in a lake by applying some external efforts with time delay, Differ. Equ. Dyn. Syst., (2017).
doi: 10.1007/s12591-017-0383-5. |
[41] |
T. Park, A matlab version of the lyapunov exponent estimation algorithm of Wolf et al. - physica16d, 1985, https://www.mathworks.com/matlabcentral/fileexchange/48084-lyapunov-exponent-estimation-from-a-time-series-documentation-added. Google Scholar |
[42] |
Phoslock: Patented phosphorus locking technology, https://www.sepro.com/aquatics/phoslock. Google Scholar |
[43] |
N. N. Rabalais, R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert and J. Zhang, Dynamics and distribution of natural and human-caused coastal hypoxia, Biogeosciences Discussions, 6 (2009), 9359-9453. Google Scholar |
[44] |
S. Rinaldi, R. Soncini-Sessa, H. Stehfest and H. Tamura, Modeling and Control of River Quality, McGraw-Hill Inc., U.K., 1979. Google Scholar |
[45] |
M. Robb, B. Greenop, Z. Goss, G. Douglas and J. Adeney, Application of Phoslock, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings, Hydrobiologia, 494 (2003), 237-243. Google Scholar |
[46] |
J. B. Shukla, A. K. Misra and P. Chandra,
Modelling and analysis of the algal bloom in a lake caused by discharge of nutrients, Appl. Math. Comp., 196 (2008), 782-790.
doi: 10.1016/j.amc.2007.07.010. |
[47] |
Z. Teng and S. Chen,
The positive periodic solutions of periodic kolmogorove type systems with delays, Acta Math. Appl. Sin., 22 (1999), 446-456.
|
[48] |
P. K. Tiwari, A. K. Misra and E. Venturino,
The role of algae in agriculture: A mathematical study, J. Biol. Phys., 43 (2017), 297-314.
doi: 10.1007/s10867-017-9453-8. |
[49] |
P. K. Tiwari, S. Rana, A. K. Misra and J. Chattopadhyay,
Effect of cross-diffusion on the patterns of algal bloom in a lake: A nonlinear analysis, Nonlinear Stud., 21 (2014), 443-462.
|
[50] |
P. K. Tiwari, S. Samanta, J. D. Ferreira and A. K. Misra, A mathematical model for the effects of nitrogen and phosphorus on algal blooms, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950129, 30pp.
doi: 10.1142/S0218127419501293. |
[51] |
F. van Oosterhout and M. Lürling,
The effect of phosphorus binding clay (Phoslock) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton, Hydrobiologia, 710 (2013), 265-277.
doi: 10.1007/s10750-012-1206-x. |
[52] |
M. L. G. Waajen, B. Engels and F. van Oosterhout, Effects of dredging and Lanthanum-modified clay on water quality variables in an enclosure study in a hypertrophic pond, Water, 9 (2017), 380.
doi: 10.3390/w9060380. |
[53] |
H. Wang, A. Appan and J. S. Gulliver, Modelling of phosphorus dynamics in aquatic sediments: I-model development, Water Res., 37 (2003), 3928-3938. Google Scholar |
[54] |
A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano,
Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285-317.
doi: 10.1016/0167-2789(85)90011-9. |
[55] |
X. Yang, L. Chen and J. Chen,
Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109-116.
doi: 10.1016/0898-1221(96)00129-0. |
[56] |
M. Zamparas, G. Gavriil, F. A. Coutelieris and I. Zacharias, A theoretical and experimental study on the P-absorption capacity of Phoslock, Appl. Surf. Sci., 335 (2015), 147-152. Google Scholar |
show all references
References:
[1] |
An overview of Phoslock and use in aquatic environments, https://www.sepro.com/documents/Phoslock/TechInfo/Phoslock%20Technical%20Bulletin.pdf. Google Scholar |
[2] |
A. M. Beeton and W. T. Edmonsdon,
The eutrophication problem, J. Fish. Res. Bd. Canada, 29 (1972), 673-682.
doi: 10.1139/f72-113. |
[3] |
J. M. Beman, K. R. Arrigo and P. A. Matson, Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean, Nature, 434 (2005), 211. Google Scholar |
[4] |
G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th edn., John Wiley & Sons, Inc. New York, 1989. |
[5] |
W. M. Bishop, T. McNabb, I. Cormican, B. E. Willis and S. Hyde, Operational evaluation of Phoslock phosphorus locking technology in Laguna Niguel Lake, California, Water Air Soil Pollut., 225 (2014), 2018.
doi: 10.1007/s11270-014-2018-6. |
[6] |
D. F. Boesch, Harmful Algal Bloom in Coastal Waters: Options for Prevention, Control and Mitigation, 10, US Department of Commerce, National Oceanic and Atmospheric Administration, Coastal Ocean Office, 1997. Google Scholar |
[7] |
G. L. Bowie, W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, S. A. Gherini, C. E. Chamberlin and T. O. Barnwell, Rates, constants, and kinetics formulations in surface water quality modeling, EPA, 600 (1985), 3-85. Google Scholar |
[8] |
S. R. Carpenter,
Phosphorus control is critical to mitigating eutrophication, Proc. Nat. Acad. Sci. USA, 105 (2008), 11039-11040.
doi: 10.1073/pnas.0806112105. |
[9] |
S. Chakraborty, P. K. Tiwari, A. K. Misra and J. Chattopadhyay,
Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Biosci., 264 (2015), 94-100.
doi: 10.1016/j.mbs.2015.03.010. |
[10] |
S. Chakraborty, P. K. Tiwari, S. K. Sasmal, A. K. Misra and J. Chattopadhyay,
Effects of fertilizers used in agricultural fields on algal blooms, Eur. Phys. J. Spec. Top., 226 (2017), 2119-2133.
doi: 10.1140/epjst/e2017-70031-7. |
[11] |
D. L. Correll,
The role of phosphorus in the eutrophication of receiving waters: A review, J. Enviro. Qual., 27 (1998), 261-266.
doi: 10.2134/jeq1998.00472425002700020004x. |
[12] |
M. Dokulil, W. Chen and Q. Cai, Anthropogenic impacts to large lakes in china: The Taihu example, Aquat. Ecosyst. Health Manag., 3 (2000), 81-94. Google Scholar |
[13] |
S. Egemose, K. Reitzel, F. Ø. Andersen and M. R. Flindt,
Chemical lake restoration products: Sediment stability and phosphorus dynamics, Environ. Sci. Technol., 44 (2010), 985-991.
doi: 10.1021/es903260y. |
[14] |
T. S. Epe, K. Finsterle and S. Yasseri,
Nine years of phosphorus management with lanthanum modified bentonite (Phoslock) in a eutrophic, shallow swimming lake in Germany, Lake Reserv. Manage., 33 (2017), 119-129.
doi: 10.1080/10402381.2016.1263693. |
[15] |
M. Fink, myAD: fast automatic differentiation code in Matlab, (2006) https://se.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab. Google Scholar |
[16] |
M. Fink, J. J. Batzel and H. Tran,
A respiratory system model: Parameter estimation and sensitivity analysis, Cardiovasc. Eng., 8 (2008), 120-134.
doi: 10.1007/s10558-007-9051-7. |
[17] |
P. J. S. Franks,
Models of harmful algal blooms, Limnol. Oceanogr., 42 (1997), 1273-1282.
doi: 10.4319/lo.1997.42.5_part_2.1273. |
[18] |
K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Mathematics and its applications. 74, Kluwer Academic Pub. Dordrecht, 1992. Google Scholar |
[19] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[20] |
R. D. Gulati, L. M. D. Pires and E. Van Donk,
Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures, Limnologica, 38 (2008), 233-247.
doi: 10.1016/j.limno.2008.05.008. |
[21] |
J. K. Hale, Functional Differential Equations, Springer Berlin Heidelbergi, 1971. Google Scholar |
[22] |
J. K. Hale, L. Verduyn and M. Sjoerd, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[23] |
A. D. Hasler,
Eutrophication of lakes by domestic drainage, Ecology, 28 (1947), 383-395.
doi: 10.2307/1931228. |
[24] |
A. Hastings and T. Powell,
Chaos in a three-species food chain, Ecology, 72 (1991), 896-903.
doi: 10.2307/1940591. |
[25] |
K. E. Havens, T. L. East, S. J. Hwang, A. J. Rodusky, B. Sharfstein and A. D. Steinman, Algal responses to experimental nutrient addition in the littooral community of a subtropical lake, Freshwater Biol, 42 (1999), 329-344. Google Scholar |
[26] |
D.-W. Huang, H.-L. Wang, J.-F. Feng and Z.-W. Zhu,
Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, Appl. Math. Model., 32 (2008), 1318-1326.
doi: 10.1016/j.apm.2007.04.006. |
[27] |
A. Huppert, B. Blasius and L. Stone,
A model of phytoplankton blooms, Am. Nat., 159 (2002), 156-171.
doi: 10.1086/324789. |
[28] |
H. P. Jarve, C. Neal and P. J. A. Withers,
Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?, Sci. Total Environ., 360 (2006), 246-253.
doi: 10.1016/j.scitotenv.2005.08.038. |
[29] |
R. A. Jones and G. F. Lee,
Recent advances in assessing impact of phosphorus loads on eutrophication related water quality, Water Res., 16 (1982), 503-515.
doi: 10.1016/0043-1354(82)90069-0. |
[30] |
S. E. Jørgenson,
A eutrophication model for a lake, Ecol. Model., 2 (1976), 147-165.
doi: 10.1016/0304-3800(76)90030-2. |
[31] |
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York/Basel, 1989. |
[32] |
S. T. Larned, Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae, Marine Biol., 132 (1998), 409-421. Google Scholar |
[33] |
J. W. G. Lund, Eutrophiocation, Proc. R. Soc. Lond. B, 180 (1972), 371-382. Google Scholar |
[34] |
M. Lürling and Y. Tolman,
Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna, Water Res., 44 (2010), 309-319.
doi: 10.1016/j.watres.2009.09.034. |
[35] |
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology, CRC, 2008. |
[36] |
S. Meis, B. M. Spears, S. C. Maberly and R. G. Perkins,
Assessing the mode of action of Phoslock in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK), Water Res., 47 (2013), 4460-4473.
doi: 10.1016/j.watres.2013.05.017. |
[37] |
A. K. Misra,
Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes, Nonlinear Anal. Model. Cont., 15 (2010), 185-198.
doi: 10.15388/NA.2010.15.2.14353. |
[38] |
A. K. Misra, Modeling the depletion of dissolved oxygen in a lake by taking Holling type-III interaction, Appl. Math. Comp., 217 (2011), 8367-8376. Google Scholar |
[39] |
A. K. Misra, R. K. Singh, P. K. Tiwari, S. Khajanchi and Y. Kang,
Dynamics of algae blooming: Effects of budget allocation and time delay, Nonlinear Dyn., 100 (2020), 1779-1807.
doi: 10.1007/s11071-020-05551-4. |
[40] |
A. K. Misra, P. K. Tiwari and P. Chandra, Modeling the control of algal bloom in a lake by applying some external efforts with time delay, Differ. Equ. Dyn. Syst., (2017).
doi: 10.1007/s12591-017-0383-5. |
[41] |
T. Park, A matlab version of the lyapunov exponent estimation algorithm of Wolf et al. - physica16d, 1985, https://www.mathworks.com/matlabcentral/fileexchange/48084-lyapunov-exponent-estimation-from-a-time-series-documentation-added. Google Scholar |
[42] |
Phoslock: Patented phosphorus locking technology, https://www.sepro.com/aquatics/phoslock. Google Scholar |
[43] |
N. N. Rabalais, R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert and J. Zhang, Dynamics and distribution of natural and human-caused coastal hypoxia, Biogeosciences Discussions, 6 (2009), 9359-9453. Google Scholar |
[44] |
S. Rinaldi, R. Soncini-Sessa, H. Stehfest and H. Tamura, Modeling and Control of River Quality, McGraw-Hill Inc., U.K., 1979. Google Scholar |
[45] |
M. Robb, B. Greenop, Z. Goss, G. Douglas and J. Adeney, Application of Phoslock, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings, Hydrobiologia, 494 (2003), 237-243. Google Scholar |
[46] |
J. B. Shukla, A. K. Misra and P. Chandra,
Modelling and analysis of the algal bloom in a lake caused by discharge of nutrients, Appl. Math. Comp., 196 (2008), 782-790.
doi: 10.1016/j.amc.2007.07.010. |
[47] |
Z. Teng and S. Chen,
The positive periodic solutions of periodic kolmogorove type systems with delays, Acta Math. Appl. Sin., 22 (1999), 446-456.
|
[48] |
P. K. Tiwari, A. K. Misra and E. Venturino,
The role of algae in agriculture: A mathematical study, J. Biol. Phys., 43 (2017), 297-314.
doi: 10.1007/s10867-017-9453-8. |
[49] |
P. K. Tiwari, S. Rana, A. K. Misra and J. Chattopadhyay,
Effect of cross-diffusion on the patterns of algal bloom in a lake: A nonlinear analysis, Nonlinear Stud., 21 (2014), 443-462.
|
[50] |
P. K. Tiwari, S. Samanta, J. D. Ferreira and A. K. Misra, A mathematical model for the effects of nitrogen and phosphorus on algal blooms, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950129, 30pp.
doi: 10.1142/S0218127419501293. |
[51] |
F. van Oosterhout and M. Lürling,
The effect of phosphorus binding clay (Phoslock) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton, Hydrobiologia, 710 (2013), 265-277.
doi: 10.1007/s10750-012-1206-x. |
[52] |
M. L. G. Waajen, B. Engels and F. van Oosterhout, Effects of dredging and Lanthanum-modified clay on water quality variables in an enclosure study in a hypertrophic pond, Water, 9 (2017), 380.
doi: 10.3390/w9060380. |
[53] |
H. Wang, A. Appan and J. S. Gulliver, Modelling of phosphorus dynamics in aquatic sediments: I-model development, Water Res., 37 (2003), 3928-3938. Google Scholar |
[54] |
A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano,
Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285-317.
doi: 10.1016/0167-2789(85)90011-9. |
[55] |
X. Yang, L. Chen and J. Chen,
Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109-116.
doi: 10.1016/0898-1221(96)00129-0. |
[56] |
M. Zamparas, G. Gavriil, F. A. Coutelieris and I. Zacharias, A theoretical and experimental study on the P-absorption capacity of Phoslock, Appl. Surf. Sci., 335 (2015), 147-152. Google Scholar |












Names | Descriptions | Units | Values |
Input rate of phosphorus to the lake | 0.1 | ||
Per capita loss rate of phosphorus | 1/day | 0.002 | |
Maximum uptake rate of phosphorus by algae | 1/day | 0.1 | |
Half saturation constant for the uptake of phosphorus by algae | 1 | ||
Proportionality constant | — | 1 | |
Algal growth due to phosphorus uptake | — | 0.9 | |
Natural mortality and higher predation of algae | 1/day | 0.03 | |
Algal mortality due to intraspecific competition | L/ |
0.05 | |
Algal conversion into detritus | — | 0.3 | |
Sinking rate of detritus to the bottom of the lake | 1/day | 0.05 | |
Remineralization of detritus into nutrients | — | 0.01 | |
Introduction rate of Phoslock in the lake | 1/day | 0.085 | |
Natural depletion rate of Phoslock | 1/day | 0.2 | |
Reduction rate of Phoslock due to reaction with phosphorus | L/ |
0.5 | |
Reduction of phosphorus due to reaction with Phoslock | — | 0.5 |
Names | Descriptions | Units | Values |
Input rate of phosphorus to the lake | 0.1 | ||
Per capita loss rate of phosphorus | 1/day | 0.002 | |
Maximum uptake rate of phosphorus by algae | 1/day | 0.1 | |
Half saturation constant for the uptake of phosphorus by algae | 1 | ||
Proportionality constant | — | 1 | |
Algal growth due to phosphorus uptake | — | 0.9 | |
Natural mortality and higher predation of algae | 1/day | 0.03 | |
Algal mortality due to intraspecific competition | L/ |
0.05 | |
Algal conversion into detritus | — | 0.3 | |
Sinking rate of detritus to the bottom of the lake | 1/day | 0.05 | |
Remineralization of detritus into nutrients | — | 0.01 | |
Introduction rate of Phoslock in the lake | 1/day | 0.085 | |
Natural depletion rate of Phoslock | 1/day | 0.2 | |
Reduction rate of Phoslock due to reaction with phosphorus | L/ |
0.5 | |
Reduction of phosphorus due to reaction with Phoslock | — | 0.5 |
[1] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[2] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[3] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[4] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[5] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[6] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[7] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[8] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[9] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[10] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[11] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[12] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[13] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[14] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[15] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[16] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[17] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[18] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[19] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[20] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]