June  2021, 26(6): 3177-3207. doi: 10.3934/dcdsb.2020224

Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space

1. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

2. 

Department of Mathematics, Duke University, Durham NC 27708, USA

3. 

Department of Mathematics and Department of Physics, Duke University, Durham NC 27708, USA

4. 

Department of Mathematics, Purdue University, West Lafayette IN 47907, USA

Received  May 2020 Published  July 2020

In this paper, we revisit the mathematical validation of the Peierls–Nabarro (PN) models, which are multiscale models of dislocations that incorporate the detailed dislocation core structure. We focus on the static and dynamic PN models of an edge dislocation in Hilbert space. In a PN model, the total energy includes the elastic energy in the two half-space continua and a nonlinear potential energy, which is always infinite, across the slip plane. We revisit the relationship between the PN model in the full space and the reduced problem on the slip plane in terms of both governing equations and energy variations. The shear displacement jump is determined only by the reduced problem on the slip plane while the displacement fields in the two half spaces are determined by linear elasticity. We establish the existence and sharp regularities of classical solutions in Hilbert space. For both the reduced problem and the full PN model, we prove that a static solution is a global minimizer in a perturbed sense. We also show that there is a unique classical, global in time solution of the dynamic PN model.

Citation: Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224
References:
[1]

G. AlbertiG. Bouchitté and P. Seppecher, Un résultat de perturbations singulieres avec la norm $H^{1/2}$, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.   Google Scholar

[2]

O. AlvarezP. HochY. Le Bouar and and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

T. BlassI. FonsecaG. Leoni and M. Morandotti, Dynamics for systems of screw dislocations, SIAM J. Appl. Math., 75 (2015), 393-419.  doi: 10.1137/140980065.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Am. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

S. CacaceA. Chambolle and R. Monneau, A posteriori error estimates for the effective Hamiltonian of dislocation dynamics, Numer. Math., 121 (2012), 281-335.  doi: 10.1007/s00211-011-0430-z.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37 (2005), 1131-1160.  doi: 10.1137/040621636.  Google Scholar

[9]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[10]

S. ContiA. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models, Arch. Ration. Mech. Anal., 199 (2011), 779-819.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[11]

S. DaiY. Xiang and D. J. Srolovitz, Structure and energy of (111) low-angle twist boundaries in Al, Cu and Ni, Acta Mater., 61 (2013), 1327-1337.  doi: 10.1016/j.actamat.2012.11.010.  Google Scholar

[12]

S. DipierroA. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[13]

S. DipierroG. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105.  doi: 10.1007/s00220-014-2118-6.  Google Scholar

[14]

S. Dipierro, S. Patrizi and E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Models Methods Appl. Sci., 29 (2019), 2585–2636. arXiv: 1711.01491. doi: 10.1142/S0218202519500556.  Google Scholar

[15]

A. Z. FinoH. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, J. Differ. Equations, 252 (2012), 258-293.  doi: 10.1016/j.jde.2011.08.007.  Google Scholar

[16]

J. Frenkel, Theory of the elastic limits and rigidity of crystalline bodies, Z. Phys., 37 (1926), 572-609.   Google Scholar

[17]

I. FonsecaN. FuscoG. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., 111 (2018), 126-160.  doi: 10.1016/j.matpur.2017.09.001.  Google Scholar

[18]

I. FonsecaG. Leoni and M. Morini, Equilibria and dislocations in epitaxial growth, Nonlinear Anal., 154 (2017), 88-121.  doi: 10.1016/j.na.2016.10.013.  Google Scholar

[19]

I. FonsecaG. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., 40 (2015), 1942-1957.  doi: 10.1080/03605302.2015.1045074.  Google Scholar

[20]

A. GarroniG. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.  doi: 10.4171/JEMS/228.  Google Scholar

[21]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/S003614100343768X.  Google Scholar

[22]

M. del M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.  doi: 10.3934/dcds.2012.32.1255.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 2nd edition, 1982. Google Scholar

[25]

E. Kaxiras and M. S. Duesbery, Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett., 70 (1993), 3752-3755.  doi: 10.1103/PhysRevLett.70.3752.  Google Scholar

[26]

M. KoslowskiA. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[27]

X. Y. Lu, On the solutions of a $2+1$-dimensional model for epitaxial growth with axial symmetry, J. Nonlinear Sci., 28 (2018), 807-831.  doi: 10.1007/s00332-017-9428-8.  Google Scholar

[28]

G. LuN. KioussisV. V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum, Phys. Rev. B, 62 (2000), 3099-3108.  doi: 10.1103/PhysRevB.62.3099.  Google Scholar

[29]

T. LuoP. Ming and Y. Xiang, From atomistic model to the Peierls-Nabarro model with Gamma-surface for dislocations, Arch. Ration. Mech. Anal., 230 (2018), 735-781.  doi: 10.1007/s00205-018-1257-x.  Google Scholar

[30]

F. R. N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.  doi: 10.1088/0959-5309/59/2/309.  Google Scholar

[31]

G. PalatucciO. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[32]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Rational Mech. Anal., 217 (2015), 231-261.  doi: 10.1007/s00205-014-0832-z.  Google Scholar

[33]

S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differ. Equ., 55 (2016), 44 pp. doi: 10.1007/s00526-016-1000-0.  Google Scholar

[34]

R. Peierls, The size of a dislocation, Selected Scientific Papers of Sir Rudolf Peierls, (1997), 273–276. doi: 10.1142/9789812795779_0032.  Google Scholar

[35]

G. Schoeck, The generalized Peierls-Nabarro model, Phil. Mag. A, 69 (1994), 1085-1095.  doi: 10.1080/01418619408242240.  Google Scholar

[36]

C. ShenJ. Li and Y. Wang, Predicting structure and energy of dislocations and grain boundaries, Acta Mater., 74 (2014), 125-131.  doi: 10.1016/j.actamat.2014.03.065.  Google Scholar

[37]

C. Shen and Y. Wang, Incorporation of $\gamma$-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals, Acta Mater., 52 (2004), 683-691.   Google Scholar

[38] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970.   Google Scholar
[39]

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18 (1968), 773-786.  doi: 10.1080/14786436808227500.  Google Scholar

[40]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. École Norm. Sup., 24 (1907), 401-517.  doi: 10.24033/asens.583.  Google Scholar

[41]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.   Google Scholar

[42]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.   Google Scholar

[43]

Y. XiangH. WeiP. Ming and W. E, A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater., 56 (2008), 1447-1460.  doi: 10.1016/j.actamat.2007.11.033.  Google Scholar

[44] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.  doi: 10.1017/CBO9780511622564.  Google Scholar
[45]

S. Zhou, J. Han, S. Dai, J. Sun and D. J. Srolovitz, van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, $\texttt92$ (2015), 155438. doi: 10.1103/PhysRevB.92.155438.  Google Scholar

show all references

References:
[1]

G. AlbertiG. Bouchitté and P. Seppecher, Un résultat de perturbations singulieres avec la norm $H^{1/2}$, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.   Google Scholar

[2]

O. AlvarezP. HochY. Le Bouar and and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

T. BlassI. FonsecaG. Leoni and M. Morandotti, Dynamics for systems of screw dislocations, SIAM J. Appl. Math., 75 (2015), 393-419.  doi: 10.1137/140980065.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Am. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

S. CacaceA. Chambolle and R. Monneau, A posteriori error estimates for the effective Hamiltonian of dislocation dynamics, Numer. Math., 121 (2012), 281-335.  doi: 10.1007/s00211-011-0430-z.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37 (2005), 1131-1160.  doi: 10.1137/040621636.  Google Scholar

[9]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[10]

S. ContiA. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models, Arch. Ration. Mech. Anal., 199 (2011), 779-819.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[11]

S. DaiY. Xiang and D. J. Srolovitz, Structure and energy of (111) low-angle twist boundaries in Al, Cu and Ni, Acta Mater., 61 (2013), 1327-1337.  doi: 10.1016/j.actamat.2012.11.010.  Google Scholar

[12]

S. DipierroA. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[13]

S. DipierroG. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105.  doi: 10.1007/s00220-014-2118-6.  Google Scholar

[14]

S. Dipierro, S. Patrizi and E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Models Methods Appl. Sci., 29 (2019), 2585–2636. arXiv: 1711.01491. doi: 10.1142/S0218202519500556.  Google Scholar

[15]

A. Z. FinoH. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, J. Differ. Equations, 252 (2012), 258-293.  doi: 10.1016/j.jde.2011.08.007.  Google Scholar

[16]

J. Frenkel, Theory of the elastic limits and rigidity of crystalline bodies, Z. Phys., 37 (1926), 572-609.   Google Scholar

[17]

I. FonsecaN. FuscoG. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., 111 (2018), 126-160.  doi: 10.1016/j.matpur.2017.09.001.  Google Scholar

[18]

I. FonsecaG. Leoni and M. Morini, Equilibria and dislocations in epitaxial growth, Nonlinear Anal., 154 (2017), 88-121.  doi: 10.1016/j.na.2016.10.013.  Google Scholar

[19]

I. FonsecaG. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., 40 (2015), 1942-1957.  doi: 10.1080/03605302.2015.1045074.  Google Scholar

[20]

A. GarroniG. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.  doi: 10.4171/JEMS/228.  Google Scholar

[21]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/S003614100343768X.  Google Scholar

[22]

M. del M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.  doi: 10.3934/dcds.2012.32.1255.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 2nd edition, 1982. Google Scholar

[25]

E. Kaxiras and M. S. Duesbery, Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett., 70 (1993), 3752-3755.  doi: 10.1103/PhysRevLett.70.3752.  Google Scholar

[26]

M. KoslowskiA. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[27]

X. Y. Lu, On the solutions of a $2+1$-dimensional model for epitaxial growth with axial symmetry, J. Nonlinear Sci., 28 (2018), 807-831.  doi: 10.1007/s00332-017-9428-8.  Google Scholar

[28]

G. LuN. KioussisV. V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum, Phys. Rev. B, 62 (2000), 3099-3108.  doi: 10.1103/PhysRevB.62.3099.  Google Scholar

[29]

T. LuoP. Ming and Y. Xiang, From atomistic model to the Peierls-Nabarro model with Gamma-surface for dislocations, Arch. Ration. Mech. Anal., 230 (2018), 735-781.  doi: 10.1007/s00205-018-1257-x.  Google Scholar

[30]

F. R. N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.  doi: 10.1088/0959-5309/59/2/309.  Google Scholar

[31]

G. PalatucciO. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[32]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Rational Mech. Anal., 217 (2015), 231-261.  doi: 10.1007/s00205-014-0832-z.  Google Scholar

[33]

S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differ. Equ., 55 (2016), 44 pp. doi: 10.1007/s00526-016-1000-0.  Google Scholar

[34]

R. Peierls, The size of a dislocation, Selected Scientific Papers of Sir Rudolf Peierls, (1997), 273–276. doi: 10.1142/9789812795779_0032.  Google Scholar

[35]

G. Schoeck, The generalized Peierls-Nabarro model, Phil. Mag. A, 69 (1994), 1085-1095.  doi: 10.1080/01418619408242240.  Google Scholar

[36]

C. ShenJ. Li and Y. Wang, Predicting structure and energy of dislocations and grain boundaries, Acta Mater., 74 (2014), 125-131.  doi: 10.1016/j.actamat.2014.03.065.  Google Scholar

[37]

C. Shen and Y. Wang, Incorporation of $\gamma$-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals, Acta Mater., 52 (2004), 683-691.   Google Scholar

[38] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970.   Google Scholar
[39]

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18 (1968), 773-786.  doi: 10.1080/14786436808227500.  Google Scholar

[40]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. École Norm. Sup., 24 (1907), 401-517.  doi: 10.24033/asens.583.  Google Scholar

[41]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.   Google Scholar

[42]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.   Google Scholar

[43]

Y. XiangH. WeiP. Ming and W. E, A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater., 56 (2008), 1447-1460.  doi: 10.1016/j.actamat.2007.11.033.  Google Scholar

[44] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.  doi: 10.1017/CBO9780511622564.  Google Scholar
[45]

S. Zhou, J. Han, S. Dai, J. Sun and D. J. Srolovitz, van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, $\texttt92$ (2015), 155438. doi: 10.1103/PhysRevB.92.155438.  Google Scholar

Figure 1.  Schematic illustration of the PN model for an edge dislocation. The dislocation locates along the $ z $ axis with $ +z $ direction, and its slip plane is the $ y = 0 $ plane. $ \mathbf b $ is the Burgers vector and $ d $ is the interplanar distance in the direction normal to the slip plane. The black dots and red circles show the locations of atoms of the two atomic planes $ y = 0^+ $ and $ y = 0^- $ in the lattice with the dislocation and in the reference states before elastic deformation, respectively, based on a simple cubic lattice. The Burgers vector enclosed by a loop $ L $ enclosing the dislocation is $ \mathbf b_L = \oint_L \,\mathrm{d} \mathbf u $
[1]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[2]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[3]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[4]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[5]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[6]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[7]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[8]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[9]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[10]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[11]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[12]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[15]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[16]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[17]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[18]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[19]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]