doi: 10.3934/dcdsb.2020225

Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles

1. 

Facultat de Ciències i Tecnologia, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain

2. 

Departamento de Matemàtica, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

* Corresponding author: Claudia Valls

Received  February 2019 Revised  May 2020 Published  July 2020

Fund Project: The first author is partially supported by the MINECO grant MTM2016-77278-P (FEDER). The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013

We provide normal forms and the global phase portraits in the Poincaré disk for all Hamiltonian planar polynomial vector fields of degree 3 symmetric with respect to the $ x- $axis having a nilpotent saddle at the origin.

Citation: Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020225
References:
[1]

M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. C. ArtésJ. Llibre and N. Vulpe, Quadratic systems with an integrable saddle: A complete classification in the coefficient space $\mathbb{R}^{12}$, Nonlin. Anal., 75 (2012), 5416-5447.  doi: 10.1016/j.na.2012.04.043.  Google Scholar

[3]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181–196; Amer. Math. Soc. Transl., 100 (1954), 119.  Google Scholar

[4]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[5]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Advances in Mathematics, 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[6]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[7]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[8]

F. S. DiasJ. Llibre and C. Valls, Polynomial Hamiltonian systems of degree $3$ with symmetric nilpotent centers, Math. Comput. Simulation, 144 (2018), 60-77.  doi: 10.1016/j.matcom.2017.06.002.  Google Scholar

[9]

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006.  Google Scholar

[10]

H. Dulac, Détermination et integration d'une certaine classe d'equations différentielle ayant par point singulier un centre, Bull. Sci. Math., 32 (1908), 230-252.   Google Scholar

[11]

P. Joyal and C. Rousseau, Saddle quantities and applications, J. Differential Equations, 78 (1999), 374-399.  doi: 10.1016/0022-0396(89)90069-7.  Google Scholar

[12]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first Degree, (Dutch) Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, (1911), 1446–1457. Google Scholar

[13]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, (Dutch) Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354–1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27–33. Google Scholar

[14]

D. SchlomiukJ. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Exp. Math., 8 (1990), 673-688.   Google Scholar

[15]

N. I. Vulpe, Affine-invariant conditions for topological distinction of quadratic systems in the presence of a center, Differential Equations, 19 (1983), 371-379.   Google Scholar

show all references

References:
[1]

M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. C. ArtésJ. Llibre and N. Vulpe, Quadratic systems with an integrable saddle: A complete classification in the coefficient space $\mathbb{R}^{12}$, Nonlin. Anal., 75 (2012), 5416-5447.  doi: 10.1016/j.na.2012.04.043.  Google Scholar

[3]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181–196; Amer. Math. Soc. Transl., 100 (1954), 119.  Google Scholar

[4]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[5]

I. E. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Advances in Mathematics, 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[6]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[7]

I. E. ColakJ. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. of Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[8]

F. S. DiasJ. Llibre and C. Valls, Polynomial Hamiltonian systems of degree $3$ with symmetric nilpotent centers, Math. Comput. Simulation, 144 (2018), 60-77.  doi: 10.1016/j.matcom.2017.06.002.  Google Scholar

[9]

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006.  Google Scholar

[10]

H. Dulac, Détermination et integration d'une certaine classe d'equations différentielle ayant par point singulier un centre, Bull. Sci. Math., 32 (1908), 230-252.   Google Scholar

[11]

P. Joyal and C. Rousseau, Saddle quantities and applications, J. Differential Equations, 78 (1999), 374-399.  doi: 10.1016/0022-0396(89)90069-7.  Google Scholar

[12]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first Degree, (Dutch) Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, (1911), 1446–1457. Google Scholar

[13]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, (Dutch) Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354–1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27–33. Google Scholar

[14]

D. SchlomiukJ. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Exp. Math., 8 (1990), 673-688.   Google Scholar

[15]

N. I. Vulpe, Affine-invariant conditions for topological distinction of quadratic systems in the presence of a center, Differential Equations, 19 (1983), 371-379.   Google Scholar

Figure 1.  Global phase portraits of Hamiltonian planar polynomial vector field of degree three with a nilpotent saddle at the origin and $ \mathbb{Z}_2 $-symmetric with $ R(x, y) = (x, -y) $. The separatrices are in bold
Figure 2.  Blow up of the origin of $ U_2 $
Figure 3.  The curves where the number of finite singular points can change. The plot of the curves $ b = b_2 $ (continous thick line), $ b = b_3 $ (dashed line), and $ b = a^2 $ (continuous thin line) for $ b>0 $
Figure 4.  The black lines correspond to the curves where the number of finite singular points can change (see Figure 3 for more details), and the gray lines correspond to the curves where the connection of saddles can occur. The connection with the saddle at the origin can occur on the upper gray line, and the connection between two saddles different from the origin can occur on the lower gray line
Figure 5.  Global phase portraits of systems (VII) for $ a = 7 $ and $ b = 34.7 $ (1.17') and $ b = b_2 $ and $ a = 4.5 $ (1.21'). The separatrices are in bold
[1]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[2]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[3]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[4]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[5]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[6]

Magdalena Caubergh, Freddy Dumortier, Stijn Luca. Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Lienard systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 963-980. doi: 10.3934/dcds.2010.27.963

[7]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[8]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[9]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[10]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[11]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020214

[12]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[13]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[14]

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081

[15]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[16]

Jordi-Lluís Figueras, Àlex Haro. A note on the fractalization of saddle invariant curves in quasiperiodic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1095-1107. doi: 10.3934/dcdss.2016043

[17]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[18]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[19]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020012

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (15)
  • HTML views (81)
  • Cited by (0)

Other articles
by authors

[Back to Top]