This paper is devoted to the global well-posedness of a three-dimensional Stokes-Magneto equations with fractional magnetic diffusion. It is proved that the equations admit a unique global-in-time strong solution for arbitrary initial data when the fractional index $ \alpha\ge\frac32 $. This result might have a potential application in the theory of magnetic relaxtion.
Citation: |
[1] | D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511599965. |
[2] | J. Chemin, D. McCormick, J. Robinson and J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1-31. doi: 10.1016/j.aim.2015.09.004. |
[3] | P. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511626333. |
[4] | C. Fefferman, D. McCormick, J. Robinson and J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035-1056. doi: 10.1016/j.jfa.2014.03.021. |
[5] | G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed. Springer, Berlin, 2011. doi: 10.1007/978-0-387-09620-9. |
[6] | L. Laudau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, OxfordLondon-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[7] | D. McCormick, J. Robinson and J. Rodrigo, Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation, Arch. Ration. Mech. Anal., 214 (2014), 503-523. doi: 10.1007/s00205-014-0760-y. |
[8] | H. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 159 (1985), 359-378. doi: 10.1017/S0022112085003251. |
[9] | H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf.Slides of talk given during MIRaW Day, "Weak Solutions of the 3D Euler Equations", University of Warwick, 8th June 2009. |
[10] | J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516. doi: 10.1142/S0219199799000183. |
[11] | W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions, submitted. |
[12] | J. Wu, Generalized MHD equations, J. Differential Equations., 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007. |