June  2021, 26(6): 3271-3278. doi: 10.3934/dcdsb.2020227

Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion

School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510520, China

* Corresponding author: Wen Tan

Received  April 2020 Published  July 2020

Fund Project: The first author is supported by NSFC grant 11701099, The second author is supported by NSFC grant 11871346

This paper is devoted to the global well-posedness of a three-dimensional Stokes-Magneto equations with fractional magnetic diffusion. It is proved that the equations admit a unique global-in-time strong solution for arbitrary initial data when the fractional index $ \alpha\ge\frac32 $. This result might have a potential application in the theory of magnetic relaxtion.

Citation: Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227
References:
[1] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.  doi: 10.1017/CBO9780511599965.  Google Scholar
[2]

J. CheminD. McCormickJ. Robinson and J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1-31.  doi: 10.1016/j.aim.2015.09.004.  Google Scholar

[3] P. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511626333.  Google Scholar
[4]

C. FeffermanD. McCormickJ. Robinson and J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035-1056.  doi: 10.1016/j.jfa.2014.03.021.  Google Scholar

[5]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed. Springer, Berlin, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[6]

L. Laudau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, OxfordLondon-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960.  Google Scholar

[7]

D. McCormickJ. Robinson and J. Rodrigo, Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation, Arch. Ration. Mech. Anal., 214 (2014), 503-523.  doi: 10.1007/s00205-014-0760-y.  Google Scholar

[8]

H. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 159 (1985), 359-378.  doi: 10.1017/S0022112085003251.  Google Scholar

[9]

H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf.Slides of talk given during MIRaW Day, "Weak Solutions of the 3D Euler Equations", University of Warwick, 8th June 2009. Google Scholar

[10]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.  doi: 10.1142/S0219199799000183.  Google Scholar

[11]

W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions, submitted. Google Scholar

[12]

J. Wu, Generalized MHD equations, J. Differential Equations., 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

show all references

References:
[1] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.  doi: 10.1017/CBO9780511599965.  Google Scholar
[2]

J. CheminD. McCormickJ. Robinson and J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1-31.  doi: 10.1016/j.aim.2015.09.004.  Google Scholar

[3] P. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511626333.  Google Scholar
[4]

C. FeffermanD. McCormickJ. Robinson and J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035-1056.  doi: 10.1016/j.jfa.2014.03.021.  Google Scholar

[5]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed. Springer, Berlin, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[6]

L. Laudau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, OxfordLondon-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960.  Google Scholar

[7]

D. McCormickJ. Robinson and J. Rodrigo, Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation, Arch. Ration. Mech. Anal., 214 (2014), 503-523.  doi: 10.1007/s00205-014-0760-y.  Google Scholar

[8]

H. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 159 (1985), 359-378.  doi: 10.1017/S0022112085003251.  Google Scholar

[9]

H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf.Slides of talk given during MIRaW Day, "Weak Solutions of the 3D Euler Equations", University of Warwick, 8th June 2009. Google Scholar

[10]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.  doi: 10.1142/S0219199799000183.  Google Scholar

[11]

W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions, submitted. Google Scholar

[12]

J. Wu, Generalized MHD equations, J. Differential Equations., 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[1]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[2]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[6]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[7]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[8]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[9]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[10]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[11]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[12]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[13]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[14]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[15]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[16]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[17]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[18]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[19]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[20]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

2019 Impact Factor: 1.27

Article outline

[Back to Top]