doi: 10.3934/dcdsb.2020229

Higher-order time-stepping schemes for fluid-structure interaction problems

1. 

Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

2. 

Dipartimento di Matematica "F. Casorati", University of Pavia, Pavia, Italy

3. 

DICATAM, University of Brescia, Brescia, Italy

4. 

Technische Universität München (TUM), München, Germany

* Corresponding author: Daniele Boffi

Received  June 2019 Revised  March 2020 Published  July 2020

We consider a recently introduced formulation for fluid-structure interaction problems which makes use of a distributed Lagrange multiplier in the spirit of the fictitious domain method. In this paper we focus on time integration methods of second order based on backward differentiation formulae and on the Crank–Nicolson method. We show the stability properties of the resulting method; numerical tests confirm the theoretical results.

Citation: Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020229
References:
[1]

D. BoffiN. CavalliniF. Gardini and L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput., 52 (2012), 383-400.  doi: 10.1007/s10915-011-9549-4.  Google Scholar

[2]

D. BoffiN. Cavallini and L. Gastaldi, Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci, 21 (2011), 2523-2550.  doi: 10.1142/S0218202511005829.  Google Scholar

[3]

D. BoffiN. Cavallini and L. Gastaldi, The finite element immersed boundary method with distributed lagrange multiplier, SIAM J. Numer. Anal., 53 (2015), 2584-2604.  doi: 10.1137/140978399.  Google Scholar

[4]

D. Boffi and L. Gastaldi, Discrete models for fluid-structure interactions: The Finite Element Immersed Boundary Method, Discrete Contin. Dyn. Syst., Ser. S, 9 (2016), 89-107.  doi: 10.3934/dcdss.2016.9.89.  Google Scholar

[5]

D. Boffi and L. Gastaldi, A fictious domain approach with distributed lagrange multipliers for fluid-structure interactions, Numer. Math., 135 (2017), 711-732.  doi: 10.1007/s00211-016-0814-1.  Google Scholar

[6]

D. BoffiL. Gastaldi and L. Heltai, Numerical stability of the finite element immersed boundary method, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1479-1505.  doi: 10.1142/S0218202507002352.  Google Scholar

[7]

D. Boffi, L. Gastaldi and L. Heltai, A distributed Lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids, in Mathematical and Numerical Modeling of the Cardiovascular System and Applications (eds. B. D., P. L., R. G., S. S. and V. C.), vol. 16 of SEMA SIMAI Springer Series, Springer, 2018, 1–21, URL https://arXiv.org/abs/1712.02545.  Google Scholar

[8]

D. BoffiL. GastaldiL. Heltai and C. S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng., 197 (2008), 2210-2231.  doi: 10.1016/j.cma.2007.09.015.  Google Scholar

[9]

M. Boulakia and S. Guerrero, On the interaction problem between a compressible fluid and a Saint–Venant Kirchoff elastic structure, Adv. Differential Equations, 22 (2017), 1-48.   Google Scholar

[10]

M. BoulakiaS. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity, 32 (2019), 3548-3592.  doi: 10.1088/1361-6544/ab128c.  Google Scholar

[11]

W. ChenM. GunzburgerD. Sun and X. Wang, Efficient and long-time accurate second-order methods for Stokes-Darcy Systems, SIAM J. Numer. Anal., 51 (2013), 2563-2584.  doi: 10.1137/120897705.  Google Scholar

[12]

C. Coutand and S. Shloller, Motion of an elastic solid inside an incompressible fluid-structure interaction, Arch. Ration. Mech. Anal., 176 (2005), 25-102.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[13]

C. Coutand and S. Shloller, The interaction between quasilinear elastidynamics and the Navier–Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[14]

P. Deuflhard and F. Bornemann, Numerische Mathematik 2, revised edition, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 2008, Gewöhnliche Differentialgleichungen. [Ordinary differential equations].  Google Scholar

[15]

S. Dong, BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys., 229 (2010), 3019-3045.  doi: 10.1016/j.jcp.2009.12.028.  Google Scholar

[16]

B. E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12 (2012), 401-432.  doi: 10.4208/cicp.120111.300911s.  Google Scholar

[17]

B. E. Griffith and X. Luo, Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Meth. Biomed. Engng., 33 (2017), e2888, 31pp. doi: 10.1002/cnm.2888.  Google Scholar

[18]

L. Heltai and F. Costanzo, Variational implementation of immersed finite element methods, Comput. Methods Appl. Mech. Eng., 229/232 (2012), 110-127.  doi: 10.1016/j.cma.2012.04.001.  Google Scholar

[19]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary navier–stokes problem. part iv: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.  doi: 10.1137/0727022.  Google Scholar

[20]

O. R. IsikG. Yuksel and B. Demir, Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Numer. Methods Partial Differ. Equations, 34 (2017), 2060-2078.  doi: 10.1002/num.22276.  Google Scholar

[21]

V. John, Finite Element Methods for Incompressible Flow Problems, Springer, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

Y. OkamotoK. Fujiwara and Y. Ishihara, Effectiveness of higher order time integration in time-domain finite-element analysis, IEEE Transactions on Magnetics, 46 (2010), 3321-3324.  doi: 10.1109/TMAG.2010.2044771.  Google Scholar

[23]

C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517.  doi: 10.1017/S0962492902000077.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier–Sstokes equations and the Lamé system, J. Mat. Pura Appl., 102 (2014), 546-596.  doi: 10.1016/j.matpur.2013.12.004.  Google Scholar

[25]

S. Roy, L. Heltai and F. Costanzo, Benchmarking the immersed finite element method for fluid-structure interaction problems, Comput. Math. Appl., 69 (2015), 1167–1188. doi: 10.1016/j.camwa.2015.03.012.  Google Scholar

[26]

X. Wang and L. T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45 (2009), 321. doi: 10.1007/s00466-009-0449-5.  Google Scholar

show all references

References:
[1]

D. BoffiN. CavalliniF. Gardini and L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput., 52 (2012), 383-400.  doi: 10.1007/s10915-011-9549-4.  Google Scholar

[2]

D. BoffiN. Cavallini and L. Gastaldi, Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci, 21 (2011), 2523-2550.  doi: 10.1142/S0218202511005829.  Google Scholar

[3]

D. BoffiN. Cavallini and L. Gastaldi, The finite element immersed boundary method with distributed lagrange multiplier, SIAM J. Numer. Anal., 53 (2015), 2584-2604.  doi: 10.1137/140978399.  Google Scholar

[4]

D. Boffi and L. Gastaldi, Discrete models for fluid-structure interactions: The Finite Element Immersed Boundary Method, Discrete Contin. Dyn. Syst., Ser. S, 9 (2016), 89-107.  doi: 10.3934/dcdss.2016.9.89.  Google Scholar

[5]

D. Boffi and L. Gastaldi, A fictious domain approach with distributed lagrange multipliers for fluid-structure interactions, Numer. Math., 135 (2017), 711-732.  doi: 10.1007/s00211-016-0814-1.  Google Scholar

[6]

D. BoffiL. Gastaldi and L. Heltai, Numerical stability of the finite element immersed boundary method, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1479-1505.  doi: 10.1142/S0218202507002352.  Google Scholar

[7]

D. Boffi, L. Gastaldi and L. Heltai, A distributed Lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids, in Mathematical and Numerical Modeling of the Cardiovascular System and Applications (eds. B. D., P. L., R. G., S. S. and V. C.), vol. 16 of SEMA SIMAI Springer Series, Springer, 2018, 1–21, URL https://arXiv.org/abs/1712.02545.  Google Scholar

[8]

D. BoffiL. GastaldiL. Heltai and C. S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng., 197 (2008), 2210-2231.  doi: 10.1016/j.cma.2007.09.015.  Google Scholar

[9]

M. Boulakia and S. Guerrero, On the interaction problem between a compressible fluid and a Saint–Venant Kirchoff elastic structure, Adv. Differential Equations, 22 (2017), 1-48.   Google Scholar

[10]

M. BoulakiaS. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity, 32 (2019), 3548-3592.  doi: 10.1088/1361-6544/ab128c.  Google Scholar

[11]

W. ChenM. GunzburgerD. Sun and X. Wang, Efficient and long-time accurate second-order methods for Stokes-Darcy Systems, SIAM J. Numer. Anal., 51 (2013), 2563-2584.  doi: 10.1137/120897705.  Google Scholar

[12]

C. Coutand and S. Shloller, Motion of an elastic solid inside an incompressible fluid-structure interaction, Arch. Ration. Mech. Anal., 176 (2005), 25-102.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[13]

C. Coutand and S. Shloller, The interaction between quasilinear elastidynamics and the Navier–Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[14]

P. Deuflhard and F. Bornemann, Numerische Mathematik 2, revised edition, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 2008, Gewöhnliche Differentialgleichungen. [Ordinary differential equations].  Google Scholar

[15]

S. Dong, BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys., 229 (2010), 3019-3045.  doi: 10.1016/j.jcp.2009.12.028.  Google Scholar

[16]

B. E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12 (2012), 401-432.  doi: 10.4208/cicp.120111.300911s.  Google Scholar

[17]

B. E. Griffith and X. Luo, Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Meth. Biomed. Engng., 33 (2017), e2888, 31pp. doi: 10.1002/cnm.2888.  Google Scholar

[18]

L. Heltai and F. Costanzo, Variational implementation of immersed finite element methods, Comput. Methods Appl. Mech. Eng., 229/232 (2012), 110-127.  doi: 10.1016/j.cma.2012.04.001.  Google Scholar

[19]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary navier–stokes problem. part iv: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.  doi: 10.1137/0727022.  Google Scholar

[20]

O. R. IsikG. Yuksel and B. Demir, Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Numer. Methods Partial Differ. Equations, 34 (2017), 2060-2078.  doi: 10.1002/num.22276.  Google Scholar

[21]

V. John, Finite Element Methods for Incompressible Flow Problems, Springer, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

Y. OkamotoK. Fujiwara and Y. Ishihara, Effectiveness of higher order time integration in time-domain finite-element analysis, IEEE Transactions on Magnetics, 46 (2010), 3321-3324.  doi: 10.1109/TMAG.2010.2044771.  Google Scholar

[23]

C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517.  doi: 10.1017/S0962492902000077.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier–Sstokes equations and the Lamé system, J. Mat. Pura Appl., 102 (2014), 546-596.  doi: 10.1016/j.matpur.2013.12.004.  Google Scholar

[25]

S. Roy, L. Heltai and F. Costanzo, Benchmarking the immersed finite element method for fluid-structure interaction problems, Comput. Math. Appl., 69 (2015), 1167–1188. doi: 10.1016/j.camwa.2015.03.012.  Google Scholar

[26]

X. Wang and L. T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45 (2009), 321. doi: 10.1007/s00466-009-0449-5.  Google Scholar

Figure 1.  Geometrical configuration of the FSI problem
Figure 2.  Sparsity pattern for a matrix arising from Equation (24)
Figure 3.  Meshes for the fluid and the structure
Figure 4.  The deformed annulus 1
Figure 5.  Volume preservation over time
Figure 6.  Volume preservation over time for coarser parameters
Figure 7.  Volume preservation over time for IFEM method
Table 1.  Mesh parameters
DOFs $ \mathbf{u}_h $ DOFs $ p_h $ DOFs $ \mathbf{X}_h $ DOFs $ \lambda_h $
coarse mesh (M = $ 8 $) $ 578 $ $ 209 $ $ 306 $ $ 306 $
fine mesh (M = $ 16 $) $ 2,178 $ $ 801 $ $ 1,122 $ $ 1,122 $
DOFs $ \mathbf{u}_h $ DOFs $ p_h $ DOFs $ \mathbf{X}_h $ DOFs $ \lambda_h $
coarse mesh (M = $ 8 $) $ 578 $ $ 209 $ $ 306 $ $ 306 $
fine mesh (M = $ 16 $) $ 2,178 $ $ 801 $ $ 1,122 $ $ 1,122 $
Table 2.  Convergence results for the fully implicit scheme on the coarse mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.63\cdot 10^{-2} $ $ 2.97\cdot 10^{-2} $ $ 2.37\cdot 10^{-1} $ $ 2.42\cdot 10^{-1} $
$ 0.025 $ $ 4.11\cdot 10^{-2} $ $ 0.89 $ $ 4.90\cdot 10^{-3} $ $ 2.60 $ $ 6.24\cdot 10^{-2} $ $ 1.92 $ $ 6.02\cdot 10^{-2} $ $ 2.00 $
$ 0.0125 $ $ 2.13\cdot 10^{-2} $ $ 0.95 $ $ 1.13\cdot 10^{-3} $ $ 2.11 $ $ 1.21\cdot 10^{-2} $ $ 2.36 $ $ 1.10\cdot 10^{-2} $ $ 2.45 $
$ 0.00625 $ $ 1.08\cdot 10^{-2} $ $ 0.97 $ $ 2.86\cdot 10^{-4} $ $ 1.98 $ $ 2.03\cdot 10^{-3} $ $ 2.58 $ $ 9.95\cdot 10^{-4} $ $ 3.47 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.60\cdot 10^{-3} $ $ 4.39\cdot 10^{-4} $ $ 1.43\cdot 10^{-3} $ $ 2.95\cdot 10^{-4} $
$ 0.025 $ $ 8.40\cdot 10^{-4} $ $ 0.93 $ $ 9.75\cdot 10^{-5} $ $ 2.17 $ $ 7.90\cdot 10^{-4} $ $ 0.86 $ $ 6.89\cdot 10^{-5} $ $ 2.10 $
$ 0.0125 $ $ 4.29\cdot 10^{-4} $ $ 0.97 $ $ 2.53\cdot 10^{-5} $ $ 1.95 $ $ 4.06\cdot 10^{-4} $ $ 0.96 $ $ 7.53\cdot 10^{-6} $ $ 3.19 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 0.98 $ $ 6.41\cdot 10^{-6} $ $ 1.98 $ $ 2.04\cdot 10^{-4} $ $ 0.99 $ $ 2.05\cdot 10^{-6} $ $ 1.88 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.63\cdot 10^{-2} $ $ 2.97\cdot 10^{-2} $ $ 2.37\cdot 10^{-1} $ $ 2.42\cdot 10^{-1} $
$ 0.025 $ $ 4.11\cdot 10^{-2} $ $ 0.89 $ $ 4.90\cdot 10^{-3} $ $ 2.60 $ $ 6.24\cdot 10^{-2} $ $ 1.92 $ $ 6.02\cdot 10^{-2} $ $ 2.00 $
$ 0.0125 $ $ 2.13\cdot 10^{-2} $ $ 0.95 $ $ 1.13\cdot 10^{-3} $ $ 2.11 $ $ 1.21\cdot 10^{-2} $ $ 2.36 $ $ 1.10\cdot 10^{-2} $ $ 2.45 $
$ 0.00625 $ $ 1.08\cdot 10^{-2} $ $ 0.97 $ $ 2.86\cdot 10^{-4} $ $ 1.98 $ $ 2.03\cdot 10^{-3} $ $ 2.58 $ $ 9.95\cdot 10^{-4} $ $ 3.47 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.60\cdot 10^{-3} $ $ 4.39\cdot 10^{-4} $ $ 1.43\cdot 10^{-3} $ $ 2.95\cdot 10^{-4} $
$ 0.025 $ $ 8.40\cdot 10^{-4} $ $ 0.93 $ $ 9.75\cdot 10^{-5} $ $ 2.17 $ $ 7.90\cdot 10^{-4} $ $ 0.86 $ $ 6.89\cdot 10^{-5} $ $ 2.10 $
$ 0.0125 $ $ 4.29\cdot 10^{-4} $ $ 0.97 $ $ 2.53\cdot 10^{-5} $ $ 1.95 $ $ 4.06\cdot 10^{-4} $ $ 0.96 $ $ 7.53\cdot 10^{-6} $ $ 3.19 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 0.98 $ $ 6.41\cdot 10^{-6} $ $ 1.98 $ $ 2.04\cdot 10^{-4} $ $ 0.99 $ $ 2.05\cdot 10^{-6} $ $ 1.88 $
Table 3.  Convergence results for the fully implicit scheme on the fine mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.05\cdot 10^{-2} $ $ 3.62\cdot 10^{-2} $ $ 2.28\cdot 10^{-1} $ $ 2.26\cdot 10^{-1} $
$ 0.025 $ $ 4.87\cdot 10^{-2} $ $ 0.89 $ $ 5.05\cdot 10^{-3} $ $ 2.84 $ $ 6.23\cdot 10^{-2} $ $ 1.87 $ $ 6.04\cdot 10^{-2} $ $ 1.91 $
$ 0.0125 $ $ 2.54\cdot 10^{-2} $ $ 0.94 $ $ 1.20\cdot 10^{-3} $ $ 2.07 $ $ 2.28\cdot 10^{-2} $ $ 1.45 $ $ 2.07\cdot 10^{-2} $ $ 1.54 $
$ 0.00625 $ $ 1.29\cdot 10^{-2} $ $ 0.98 $ $ 3.53\cdot 10^{-4} $ $ 1.77 $ $ 5.27\cdot 10^{-3} $ $ 2.11 $ $ 4.03\cdot 10^{-3} $ $ 2.36 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.98\cdot 10^{-3} $ $ 5.19\cdot 10^{-4} $ $ 1.65\cdot 10^{-3} $ $ 4.04\cdot 10^{-4} $
$ 0.025 $ $ 1.05\cdot 10^{-3} $ $ 0.92 $ $ 9.79\cdot 10^{-5} $ $ 2.41 $ $ 9.27\cdot 10^{-4} $ $ 0.84 $ $ 8.48\cdot 10^{-5} $ $ 2.25 $
$ 0.0125 $ $ 5.31\cdot 10^{-4} $ $ 0.99 $ $ 3.13\cdot 10^{-5} $ $ 1.64 $ $ 4.90\cdot 10^{-4} $ $ 0.92 $ $ 2.47\cdot 10^{-5} $ $ 1.78 $
$ 0.00625 $ $ 2.70\cdot 10^{-4} $ $ 0.98 $ $ 1.35\cdot 10^{-5} $ $ 1.22 $ $ 2.50\cdot 10^{-4} $ $ 0.97 $ $ 3.47\cdot 10^{-6} $ $ 2.83 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.05\cdot 10^{-2} $ $ 3.62\cdot 10^{-2} $ $ 2.28\cdot 10^{-1} $ $ 2.26\cdot 10^{-1} $
$ 0.025 $ $ 4.87\cdot 10^{-2} $ $ 0.89 $ $ 5.05\cdot 10^{-3} $ $ 2.84 $ $ 6.23\cdot 10^{-2} $ $ 1.87 $ $ 6.04\cdot 10^{-2} $ $ 1.91 $
$ 0.0125 $ $ 2.54\cdot 10^{-2} $ $ 0.94 $ $ 1.20\cdot 10^{-3} $ $ 2.07 $ $ 2.28\cdot 10^{-2} $ $ 1.45 $ $ 2.07\cdot 10^{-2} $ $ 1.54 $
$ 0.00625 $ $ 1.29\cdot 10^{-2} $ $ 0.98 $ $ 3.53\cdot 10^{-4} $ $ 1.77 $ $ 5.27\cdot 10^{-3} $ $ 2.11 $ $ 4.03\cdot 10^{-3} $ $ 2.36 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.98\cdot 10^{-3} $ $ 5.19\cdot 10^{-4} $ $ 1.65\cdot 10^{-3} $ $ 4.04\cdot 10^{-4} $
$ 0.025 $ $ 1.05\cdot 10^{-3} $ $ 0.92 $ $ 9.79\cdot 10^{-5} $ $ 2.41 $ $ 9.27\cdot 10^{-4} $ $ 0.84 $ $ 8.48\cdot 10^{-5} $ $ 2.25 $
$ 0.0125 $ $ 5.31\cdot 10^{-4} $ $ 0.99 $ $ 3.13\cdot 10^{-5} $ $ 1.64 $ $ 4.90\cdot 10^{-4} $ $ 0.92 $ $ 2.47\cdot 10^{-5} $ $ 1.78 $
$ 0.00625 $ $ 2.70\cdot 10^{-4} $ $ 0.98 $ $ 1.35\cdot 10^{-5} $ $ 1.22 $ $ 2.50\cdot 10^{-4} $ $ 0.97 $ $ 3.47\cdot 10^{-6} $ $ 2.83 $
Table 4.  Maximum iterates of the nonlinear solver on the coarse mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 5 $ $ 5 $ $ 4 $ $ 7 $
$ 0.025 $ $ 4 $ $ 4 $ $ 3 $ $ 4 $
$ 0.0125 $ $ 3 $ $ 3 $ $ 3 $ $ 3 $
$ 0.00625 $ $ 3 $ $ 3 $ $ 2 $ $ 3 $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 5 $ $ 5 $ $ 4 $ $ 7 $
$ 0.025 $ $ 4 $ $ 4 $ $ 3 $ $ 4 $
$ 0.0125 $ $ 3 $ $ 3 $ $ 3 $ $ 3 $
$ 0.00625 $ $ 3 $ $ 3 $ $ 2 $ $ 3 $
Table 5.  Maximum iterates of the nonlinear solver on the fine mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 10 $ $ 5 $ $ 6 $ $ 6 $
$ 0.025 $ $ 6 $ $ 5 $ $ 5 $ $ 4 $
$ 0.0125 $ $ 6 $ $ 4 $ $ 4 $ $ 4 $
$ 0.00625 $ $ 4 $ $ 4 $ $ 3 $ $ 3 $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 10 $ $ 5 $ $ 6 $ $ 6 $
$ 0.025 $ $ 6 $ $ 5 $ $ 5 $ $ 4 $
$ 0.0125 $ $ 6 $ $ 4 $ $ 4 $ $ 4 $
$ 0.00625 $ $ 4 $ $ 4 $ $ 3 $ $ 3 $
Table 6.  Convergence results for the semi-implicit scheme on the coarse mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.78\cdot 10^{-2} $ $ 3.05\cdot 10^{-2} $ $ 2.49\cdot 10^{-1} $ $ 2.58\cdot 10^{-1} $
$ 0.025 $ $ 4.17\cdot 10^{-2} $ $ 0.90 $ $ 7.89\cdot 10^{-3} $ $ 1.95 $ $ 6.24\cdot 10^{-2} $ $ 2.00 $ $ 6.74\cdot 10^{-2} $ $ 1.94 $
$ 0.0125 $ $ 2.17\cdot 10^{-2} $ $ 0.95 $ $ 3.14\cdot 10^{-3} $ $ 1.33 $ $ 1.24\cdot 10^{-2} $ $ 2.33 $ $ 2.64\cdot 10^{-2} $ $ 1.35 $
$ 0.00625 $ $ 1.10\cdot 10^{-2} $ $ 0.97 $ $ 1.29\cdot 10^{-3} $ $ 1.29 $ $ 2.25\cdot 10^{-3} $ $ 2.47 $ $ 3.18\cdot 10^{-3} $ $ 3.06 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.67\cdot 10^{-3} $ $ 6.79\cdot 10^{-4} $ $ 1.44\cdot 10^{-3} $ $ 3.52\cdot 10^{-4} $
$ 0.025 $ $ 8.65\cdot 10^{-4} $ $ 0.95 $ $ 2.70\cdot 10^{-4} $ $ 1.33 $ $ 7.91\cdot 10^{-4} $ $ 0.86 $ $ 2.60\cdot 10^{-4} $ $ 0.44 $
$ 0.0125 $ $ 4.36\cdot 10^{-4} $ $ 0.99 $ $ 1.24\cdot 10^{-4} $ $ 1.12 $ $ 4.05\cdot 10^{-4} $ $ 0.97 $ $ 1.53\cdot 10^{-5} $ $ 4.08 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 1.01 $ $ 5.71\cdot 10^{-5} $ $ 1.12 $ $ 2.05\cdot 10^{-4} $ $ 0.98 $ $ 9.43\cdot 10^{-6} $ $ 0.70 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.78\cdot 10^{-2} $ $ 3.05\cdot 10^{-2} $ $ 2.49\cdot 10^{-1} $ $ 2.58\cdot 10^{-1} $
$ 0.025 $ $ 4.17\cdot 10^{-2} $ $ 0.90 $ $ 7.89\cdot 10^{-3} $ $ 1.95 $ $ 6.24\cdot 10^{-2} $ $ 2.00 $ $ 6.74\cdot 10^{-2} $ $ 1.94 $
$ 0.0125 $ $ 2.17\cdot 10^{-2} $ $ 0.95 $ $ 3.14\cdot 10^{-3} $ $ 1.33 $ $ 1.24\cdot 10^{-2} $ $ 2.33 $ $ 2.64\cdot 10^{-2} $ $ 1.35 $
$ 0.00625 $ $ 1.10\cdot 10^{-2} $ $ 0.97 $ $ 1.29\cdot 10^{-3} $ $ 1.29 $ $ 2.25\cdot 10^{-3} $ $ 2.47 $ $ 3.18\cdot 10^{-3} $ $ 3.06 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.67\cdot 10^{-3} $ $ 6.79\cdot 10^{-4} $ $ 1.44\cdot 10^{-3} $ $ 3.52\cdot 10^{-4} $
$ 0.025 $ $ 8.65\cdot 10^{-4} $ $ 0.95 $ $ 2.70\cdot 10^{-4} $ $ 1.33 $ $ 7.91\cdot 10^{-4} $ $ 0.86 $ $ 2.60\cdot 10^{-4} $ $ 0.44 $
$ 0.0125 $ $ 4.36\cdot 10^{-4} $ $ 0.99 $ $ 1.24\cdot 10^{-4} $ $ 1.12 $ $ 4.05\cdot 10^{-4} $ $ 0.97 $ $ 1.53\cdot 10^{-5} $ $ 4.08 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 1.01 $ $ 5.71\cdot 10^{-5} $ $ 1.12 $ $ 2.05\cdot 10^{-4} $ $ 0.98 $ $ 9.43\cdot 10^{-6} $ $ 0.70 $
Table 7.  Convergence results for the semi-implicit scheme on the fine mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.18\cdot 10^{-2} $ $ 3.89\cdot 10^{-2} $ $ 2.36\cdot 10^{-1} $ $ 2.39\cdot 10^{-1} $
$ 0.025 $ $ 5.05\cdot 10^{-2} $ $ 0.86 $ $ 8.59\cdot 10^{-3} $ $ 2.18 $ $ 7.54\cdot 10^{-2} $ $ 1.64 $ $ 7.06\cdot 10^{-2} $ $ 1.76 $
$ 0.0125 $ $ 2.63\cdot 10^{-2} $ $ 0.94 $ $ 3.32\cdot 10^{-3} $ $ 1.37 $ $ 4.24\cdot 10^{-2} $ $ 0.83 $ $ 2.22\cdot 10^{-2} $ $ 1.67 $
$ 0.00625 $ $ 1.33\cdot 10^{-2} $ $ 0.98 $ $ 1.40\cdot 10^{-3} $ $ 1.24 $ $ 2.19\cdot 10^{-2} $ $ 0.96 $ $ 4.19\cdot 10^{-3} $ $ 2.40 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 2.03\cdot 10^{-3} $ $ 7.86\cdot 10^{-4} $ $ 1.81\cdot 10^{-3} $ $ 6.51\cdot 10^{-4} $
$ 0.025 $ $ 1.06\cdot 10^{-3} $ $ 0.93 $ $ 3.28\cdot 10^{-4} $ $ 1.26 $ $ 9.75\cdot 10^{-4} $ $ 0.89 $ $ 1.31\cdot 10^{-4} $ $ 2.31 $
$ 0.0125 $ $ 5.34\cdot 10^{-4} $ $ 1.00 $ $ 1.44\cdot 10^{-4} $ $ 1.18 $ $ 5.10\cdot 10^{-4} $ $ 0.93 $ $ 4.82\cdot 10^{-5} $ $ 1.44 $
$ 0.00625 $ $ 2.69\cdot 10^{-4} $ $ 0.99 $ $ 6.31\cdot 10^{-5} $ $ 1.19 $ $ 2.55\cdot 10^{-4} $ $ 1.00 $ $ 1.29\cdot 10^{-5} $ $ 1.90 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.18\cdot 10^{-2} $ $ 3.89\cdot 10^{-2} $ $ 2.36\cdot 10^{-1} $ $ 2.39\cdot 10^{-1} $
$ 0.025 $ $ 5.05\cdot 10^{-2} $ $ 0.86 $ $ 8.59\cdot 10^{-3} $ $ 2.18 $ $ 7.54\cdot 10^{-2} $ $ 1.64 $ $ 7.06\cdot 10^{-2} $ $ 1.76 $
$ 0.0125 $ $ 2.63\cdot 10^{-2} $ $ 0.94 $ $ 3.32\cdot 10^{-3} $ $ 1.37 $ $ 4.24\cdot 10^{-2} $ $ 0.83 $ $ 2.22\cdot 10^{-2} $ $ 1.67 $
$ 0.00625 $ $ 1.33\cdot 10^{-2} $ $ 0.98 $ $ 1.40\cdot 10^{-3} $ $ 1.24 $ $ 2.19\cdot 10^{-2} $ $ 0.96 $ $ 4.19\cdot 10^{-3} $ $ 2.40 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 2.03\cdot 10^{-3} $ $ 7.86\cdot 10^{-4} $ $ 1.81\cdot 10^{-3} $ $ 6.51\cdot 10^{-4} $
$ 0.025 $ $ 1.06\cdot 10^{-3} $ $ 0.93 $ $ 3.28\cdot 10^{-4} $ $ 1.26 $ $ 9.75\cdot 10^{-4} $ $ 0.89 $ $ 1.31\cdot 10^{-4} $ $ 2.31 $
$ 0.0125 $ $ 5.34\cdot 10^{-4} $ $ 1.00 $ $ 1.44\cdot 10^{-4} $ $ 1.18 $ $ 5.10\cdot 10^{-4} $ $ 0.93 $ $ 4.82\cdot 10^{-5} $ $ 1.44 $
$ 0.00625 $ $ 2.69\cdot 10^{-4} $ $ 0.99 $ $ 6.31\cdot 10^{-5} $ $ 1.19 $ $ 2.55\cdot 10^{-4} $ $ 1.00 $ $ 1.29\cdot 10^{-5} $ $ 1.90 $
Table 8.  Maximum residual in the semi-implicit scheme on the coarse mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.83\cdot 10^{-3} $ $ 3.83\cdot 10^{-3} $ $ 9.87\cdot 10^{-3} $ $ 9.64\cdot 10^{-2} $
$ 0.025 $ $ 2.09\cdot 10^{-3} $ $ 2.30\cdot 10^{-3} $ $ 1.24\cdot 10^{-3} $ $ 2.17\cdot 10^{-2} $
$ 0.0125 $ $ 7.41\cdot 10^{-4} $ $ 8.26\cdot 10^{-4} $ $ 3.62\cdot 10^{-4} $ $ 7.90\cdot 10^{-3} $
$ 0.00625 $ $ 2.23\cdot 10^{-4} $ $ 2.45\cdot 10^{-4} $ $ 1.08\cdot 10^{-4} $ $ 9.55\cdot 10^{-4} $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.83\cdot 10^{-3} $ $ 3.83\cdot 10^{-3} $ $ 9.87\cdot 10^{-3} $ $ 9.64\cdot 10^{-2} $
$ 0.025 $ $ 2.09\cdot 10^{-3} $ $ 2.30\cdot 10^{-3} $ $ 1.24\cdot 10^{-3} $ $ 2.17\cdot 10^{-2} $
$ 0.0125 $ $ 7.41\cdot 10^{-4} $ $ 8.26\cdot 10^{-4} $ $ 3.62\cdot 10^{-4} $ $ 7.90\cdot 10^{-3} $
$ 0.00625 $ $ 2.23\cdot 10^{-4} $ $ 2.45\cdot 10^{-4} $ $ 1.08\cdot 10^{-4} $ $ 9.55\cdot 10^{-4} $
Table 9.  Maximum residual in the semi-implicit scheme on the fine mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.59\cdot 10^{-2} $ $ 3.59\cdot 10^{-2} $ $ 3.43\cdot 10^{-2} $ $ 3.81\cdot 10^{-2} $
$ 0.025 $ $ 1.03\cdot 10^{-2} $ $ 1.07\cdot 10^{-2} $ $ 8.19\cdot 10^{-3} $ $ 1.02\cdot 10^{-2} $
$ 0.0125 $ $ 5.28\cdot 10^{-3} $ $ 5.87\cdot 10^{-3} $ $ 1.54\cdot 10^{-3} $ $ 2.27\cdot 10^{-3} $
$ 0.00625 $ $ 1.46\cdot 10^{-3} $ $ 1.44\cdot 10^{-3} $ $ 4.33\cdot 10^{-4} $ $ 5.08\cdot 10^{-4} $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.59\cdot 10^{-2} $ $ 3.59\cdot 10^{-2} $ $ 3.43\cdot 10^{-2} $ $ 3.81\cdot 10^{-2} $
$ 0.025 $ $ 1.03\cdot 10^{-2} $ $ 1.07\cdot 10^{-2} $ $ 8.19\cdot 10^{-3} $ $ 1.02\cdot 10^{-2} $
$ 0.0125 $ $ 5.28\cdot 10^{-3} $ $ 5.87\cdot 10^{-3} $ $ 1.54\cdot 10^{-3} $ $ 2.27\cdot 10^{-3} $
$ 0.00625 $ $ 1.46\cdot 10^{-3} $ $ 1.44\cdot 10^{-3} $ $ 4.33\cdot 10^{-4} $ $ 5.08\cdot 10^{-4} $
[1]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[2]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[3]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[4]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[5]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[6]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[7]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[8]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[9]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[10]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[11]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[12]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020349

[13]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[14]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[15]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[16]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[17]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020323

[18]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[19]

Andrea L. Bertozzi, Ning Ju, Hsiang-Wei Lu. A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1367-1391. doi: 10.3934/dcds.2011.29.1367

[20]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]