October  2020, 25(10): 3807-3830. doi: 10.3934/dcdsb.2020229

Higher-order time-stepping schemes for fluid-structure interaction problems

1. 

Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

2. 

Dipartimento di Matematica "F. Casorati", University of Pavia, Pavia, Italy

3. 

DICATAM, University of Brescia, Brescia, Italy

4. 

Technische Universität München (TUM), München, Germany

* Corresponding author: Daniele Boffi

Received  June 2019 Revised  March 2020 Published  July 2020

We consider a recently introduced formulation for fluid-structure interaction problems which makes use of a distributed Lagrange multiplier in the spirit of the fictitious domain method. In this paper we focus on time integration methods of second order based on backward differentiation formulae and on the Crank–Nicolson method. We show the stability properties of the resulting method; numerical tests confirm the theoretical results.

Citation: Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229
References:
[1]

D. BoffiN. CavalliniF. Gardini and L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput., 52 (2012), 383-400.  doi: 10.1007/s10915-011-9549-4.  Google Scholar

[2]

D. BoffiN. Cavallini and L. Gastaldi, Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci, 21 (2011), 2523-2550.  doi: 10.1142/S0218202511005829.  Google Scholar

[3]

D. BoffiN. Cavallini and L. Gastaldi, The finite element immersed boundary method with distributed lagrange multiplier, SIAM J. Numer. Anal., 53 (2015), 2584-2604.  doi: 10.1137/140978399.  Google Scholar

[4]

D. Boffi and L. Gastaldi, Discrete models for fluid-structure interactions: The Finite Element Immersed Boundary Method, Discrete Contin. Dyn. Syst., Ser. S, 9 (2016), 89-107.  doi: 10.3934/dcdss.2016.9.89.  Google Scholar

[5]

D. Boffi and L. Gastaldi, A fictious domain approach with distributed lagrange multipliers for fluid-structure interactions, Numer. Math., 135 (2017), 711-732.  doi: 10.1007/s00211-016-0814-1.  Google Scholar

[6]

D. BoffiL. Gastaldi and L. Heltai, Numerical stability of the finite element immersed boundary method, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1479-1505.  doi: 10.1142/S0218202507002352.  Google Scholar

[7]

D. Boffi, L. Gastaldi and L. Heltai, A distributed Lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids, in Mathematical and Numerical Modeling of the Cardiovascular System and Applications (eds. B. D., P. L., R. G., S. S. and V. C.), vol. 16 of SEMA SIMAI Springer Series, Springer, 2018, 1–21, URL https://arXiv.org/abs/1712.02545.  Google Scholar

[8]

D. BoffiL. GastaldiL. Heltai and C. S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng., 197 (2008), 2210-2231.  doi: 10.1016/j.cma.2007.09.015.  Google Scholar

[9]

M. Boulakia and S. Guerrero, On the interaction problem between a compressible fluid and a Saint–Venant Kirchoff elastic structure, Adv. Differential Equations, 22 (2017), 1-48.   Google Scholar

[10]

M. BoulakiaS. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity, 32 (2019), 3548-3592.  doi: 10.1088/1361-6544/ab128c.  Google Scholar

[11]

W. ChenM. GunzburgerD. Sun and X. Wang, Efficient and long-time accurate second-order methods for Stokes-Darcy Systems, SIAM J. Numer. Anal., 51 (2013), 2563-2584.  doi: 10.1137/120897705.  Google Scholar

[12]

C. Coutand and S. Shloller, Motion of an elastic solid inside an incompressible fluid-structure interaction, Arch. Ration. Mech. Anal., 176 (2005), 25-102.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[13]

C. Coutand and S. Shloller, The interaction between quasilinear elastidynamics and the Navier–Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[14]

P. Deuflhard and F. Bornemann, Numerische Mathematik 2, revised edition, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 2008, Gewöhnliche Differentialgleichungen. [Ordinary differential equations].  Google Scholar

[15]

S. Dong, BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys., 229 (2010), 3019-3045.  doi: 10.1016/j.jcp.2009.12.028.  Google Scholar

[16]

B. E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12 (2012), 401-432.  doi: 10.4208/cicp.120111.300911s.  Google Scholar

[17]

B. E. Griffith and X. Luo, Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Meth. Biomed. Engng., 33 (2017), e2888, 31pp. doi: 10.1002/cnm.2888.  Google Scholar

[18]

L. Heltai and F. Costanzo, Variational implementation of immersed finite element methods, Comput. Methods Appl. Mech. Eng., 229/232 (2012), 110-127.  doi: 10.1016/j.cma.2012.04.001.  Google Scholar

[19]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary navier–stokes problem. part iv: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.  doi: 10.1137/0727022.  Google Scholar

[20]

O. R. IsikG. Yuksel and B. Demir, Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Numer. Methods Partial Differ. Equations, 34 (2017), 2060-2078.  doi: 10.1002/num.22276.  Google Scholar

[21]

V. John, Finite Element Methods for Incompressible Flow Problems, Springer, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

Y. OkamotoK. Fujiwara and Y. Ishihara, Effectiveness of higher order time integration in time-domain finite-element analysis, IEEE Transactions on Magnetics, 46 (2010), 3321-3324.  doi: 10.1109/TMAG.2010.2044771.  Google Scholar

[23]

C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517.  doi: 10.1017/S0962492902000077.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier–Sstokes equations and the Lamé system, J. Mat. Pura Appl., 102 (2014), 546-596.  doi: 10.1016/j.matpur.2013.12.004.  Google Scholar

[25]

S. Roy, L. Heltai and F. Costanzo, Benchmarking the immersed finite element method for fluid-structure interaction problems, Comput. Math. Appl., 69 (2015), 1167–1188. doi: 10.1016/j.camwa.2015.03.012.  Google Scholar

[26]

X. Wang and L. T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45 (2009), 321. doi: 10.1007/s00466-009-0449-5.  Google Scholar

show all references

References:
[1]

D. BoffiN. CavalliniF. Gardini and L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput., 52 (2012), 383-400.  doi: 10.1007/s10915-011-9549-4.  Google Scholar

[2]

D. BoffiN. Cavallini and L. Gastaldi, Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci, 21 (2011), 2523-2550.  doi: 10.1142/S0218202511005829.  Google Scholar

[3]

D. BoffiN. Cavallini and L. Gastaldi, The finite element immersed boundary method with distributed lagrange multiplier, SIAM J. Numer. Anal., 53 (2015), 2584-2604.  doi: 10.1137/140978399.  Google Scholar

[4]

D. Boffi and L. Gastaldi, Discrete models for fluid-structure interactions: The Finite Element Immersed Boundary Method, Discrete Contin. Dyn. Syst., Ser. S, 9 (2016), 89-107.  doi: 10.3934/dcdss.2016.9.89.  Google Scholar

[5]

D. Boffi and L. Gastaldi, A fictious domain approach with distributed lagrange multipliers for fluid-structure interactions, Numer. Math., 135 (2017), 711-732.  doi: 10.1007/s00211-016-0814-1.  Google Scholar

[6]

D. BoffiL. Gastaldi and L. Heltai, Numerical stability of the finite element immersed boundary method, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1479-1505.  doi: 10.1142/S0218202507002352.  Google Scholar

[7]

D. Boffi, L. Gastaldi and L. Heltai, A distributed Lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids, in Mathematical and Numerical Modeling of the Cardiovascular System and Applications (eds. B. D., P. L., R. G., S. S. and V. C.), vol. 16 of SEMA SIMAI Springer Series, Springer, 2018, 1–21, URL https://arXiv.org/abs/1712.02545.  Google Scholar

[8]

D. BoffiL. GastaldiL. Heltai and C. S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng., 197 (2008), 2210-2231.  doi: 10.1016/j.cma.2007.09.015.  Google Scholar

[9]

M. Boulakia and S. Guerrero, On the interaction problem between a compressible fluid and a Saint–Venant Kirchoff elastic structure, Adv. Differential Equations, 22 (2017), 1-48.   Google Scholar

[10]

M. BoulakiaS. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity, 32 (2019), 3548-3592.  doi: 10.1088/1361-6544/ab128c.  Google Scholar

[11]

W. ChenM. GunzburgerD. Sun and X. Wang, Efficient and long-time accurate second-order methods for Stokes-Darcy Systems, SIAM J. Numer. Anal., 51 (2013), 2563-2584.  doi: 10.1137/120897705.  Google Scholar

[12]

C. Coutand and S. Shloller, Motion of an elastic solid inside an incompressible fluid-structure interaction, Arch. Ration. Mech. Anal., 176 (2005), 25-102.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[13]

C. Coutand and S. Shloller, The interaction between quasilinear elastidynamics and the Navier–Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[14]

P. Deuflhard and F. Bornemann, Numerische Mathematik 2, revised edition, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 2008, Gewöhnliche Differentialgleichungen. [Ordinary differential equations].  Google Scholar

[15]

S. Dong, BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys., 229 (2010), 3019-3045.  doi: 10.1016/j.jcp.2009.12.028.  Google Scholar

[16]

B. E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12 (2012), 401-432.  doi: 10.4208/cicp.120111.300911s.  Google Scholar

[17]

B. E. Griffith and X. Luo, Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Meth. Biomed. Engng., 33 (2017), e2888, 31pp. doi: 10.1002/cnm.2888.  Google Scholar

[18]

L. Heltai and F. Costanzo, Variational implementation of immersed finite element methods, Comput. Methods Appl. Mech. Eng., 229/232 (2012), 110-127.  doi: 10.1016/j.cma.2012.04.001.  Google Scholar

[19]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary navier–stokes problem. part iv: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.  doi: 10.1137/0727022.  Google Scholar

[20]

O. R. IsikG. Yuksel and B. Demir, Analysis of second order and unconditionally stable BDF2-AB2 method for the Navier-Stokes equations with nonlinear time relaxation, Numer. Methods Partial Differ. Equations, 34 (2017), 2060-2078.  doi: 10.1002/num.22276.  Google Scholar

[21]

V. John, Finite Element Methods for Incompressible Flow Problems, Springer, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

Y. OkamotoK. Fujiwara and Y. Ishihara, Effectiveness of higher order time integration in time-domain finite-element analysis, IEEE Transactions on Magnetics, 46 (2010), 3321-3324.  doi: 10.1109/TMAG.2010.2044771.  Google Scholar

[23]

C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517.  doi: 10.1017/S0962492902000077.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier–Sstokes equations and the Lamé system, J. Mat. Pura Appl., 102 (2014), 546-596.  doi: 10.1016/j.matpur.2013.12.004.  Google Scholar

[25]

S. Roy, L. Heltai and F. Costanzo, Benchmarking the immersed finite element method for fluid-structure interaction problems, Comput. Math. Appl., 69 (2015), 1167–1188. doi: 10.1016/j.camwa.2015.03.012.  Google Scholar

[26]

X. Wang and L. T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45 (2009), 321. doi: 10.1007/s00466-009-0449-5.  Google Scholar

Figure 1.  Geometrical configuration of the FSI problem
Figure 2.  Sparsity pattern for a matrix arising from Equation (24)
Figure 3.  Meshes for the fluid and the structure
Figure 4.  The deformed annulus 1
Figure 5.  Volume preservation over time
Figure 6.  Volume preservation over time for coarser parameters
Figure 7.  Volume preservation over time for IFEM method
Table 1.  Mesh parameters
DOFs $ \mathbf{u}_h $ DOFs $ p_h $ DOFs $ \mathbf{X}_h $ DOFs $ \lambda_h $
coarse mesh (M = $ 8 $) $ 578 $ $ 209 $ $ 306 $ $ 306 $
fine mesh (M = $ 16 $) $ 2,178 $ $ 801 $ $ 1,122 $ $ 1,122 $
DOFs $ \mathbf{u}_h $ DOFs $ p_h $ DOFs $ \mathbf{X}_h $ DOFs $ \lambda_h $
coarse mesh (M = $ 8 $) $ 578 $ $ 209 $ $ 306 $ $ 306 $
fine mesh (M = $ 16 $) $ 2,178 $ $ 801 $ $ 1,122 $ $ 1,122 $
Table 2.  Convergence results for the fully implicit scheme on the coarse mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.63\cdot 10^{-2} $ $ 2.97\cdot 10^{-2} $ $ 2.37\cdot 10^{-1} $ $ 2.42\cdot 10^{-1} $
$ 0.025 $ $ 4.11\cdot 10^{-2} $ $ 0.89 $ $ 4.90\cdot 10^{-3} $ $ 2.60 $ $ 6.24\cdot 10^{-2} $ $ 1.92 $ $ 6.02\cdot 10^{-2} $ $ 2.00 $
$ 0.0125 $ $ 2.13\cdot 10^{-2} $ $ 0.95 $ $ 1.13\cdot 10^{-3} $ $ 2.11 $ $ 1.21\cdot 10^{-2} $ $ 2.36 $ $ 1.10\cdot 10^{-2} $ $ 2.45 $
$ 0.00625 $ $ 1.08\cdot 10^{-2} $ $ 0.97 $ $ 2.86\cdot 10^{-4} $ $ 1.98 $ $ 2.03\cdot 10^{-3} $ $ 2.58 $ $ 9.95\cdot 10^{-4} $ $ 3.47 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.60\cdot 10^{-3} $ $ 4.39\cdot 10^{-4} $ $ 1.43\cdot 10^{-3} $ $ 2.95\cdot 10^{-4} $
$ 0.025 $ $ 8.40\cdot 10^{-4} $ $ 0.93 $ $ 9.75\cdot 10^{-5} $ $ 2.17 $ $ 7.90\cdot 10^{-4} $ $ 0.86 $ $ 6.89\cdot 10^{-5} $ $ 2.10 $
$ 0.0125 $ $ 4.29\cdot 10^{-4} $ $ 0.97 $ $ 2.53\cdot 10^{-5} $ $ 1.95 $ $ 4.06\cdot 10^{-4} $ $ 0.96 $ $ 7.53\cdot 10^{-6} $ $ 3.19 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 0.98 $ $ 6.41\cdot 10^{-6} $ $ 1.98 $ $ 2.04\cdot 10^{-4} $ $ 0.99 $ $ 2.05\cdot 10^{-6} $ $ 1.88 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.63\cdot 10^{-2} $ $ 2.97\cdot 10^{-2} $ $ 2.37\cdot 10^{-1} $ $ 2.42\cdot 10^{-1} $
$ 0.025 $ $ 4.11\cdot 10^{-2} $ $ 0.89 $ $ 4.90\cdot 10^{-3} $ $ 2.60 $ $ 6.24\cdot 10^{-2} $ $ 1.92 $ $ 6.02\cdot 10^{-2} $ $ 2.00 $
$ 0.0125 $ $ 2.13\cdot 10^{-2} $ $ 0.95 $ $ 1.13\cdot 10^{-3} $ $ 2.11 $ $ 1.21\cdot 10^{-2} $ $ 2.36 $ $ 1.10\cdot 10^{-2} $ $ 2.45 $
$ 0.00625 $ $ 1.08\cdot 10^{-2} $ $ 0.97 $ $ 2.86\cdot 10^{-4} $ $ 1.98 $ $ 2.03\cdot 10^{-3} $ $ 2.58 $ $ 9.95\cdot 10^{-4} $ $ 3.47 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.60\cdot 10^{-3} $ $ 4.39\cdot 10^{-4} $ $ 1.43\cdot 10^{-3} $ $ 2.95\cdot 10^{-4} $
$ 0.025 $ $ 8.40\cdot 10^{-4} $ $ 0.93 $ $ 9.75\cdot 10^{-5} $ $ 2.17 $ $ 7.90\cdot 10^{-4} $ $ 0.86 $ $ 6.89\cdot 10^{-5} $ $ 2.10 $
$ 0.0125 $ $ 4.29\cdot 10^{-4} $ $ 0.97 $ $ 2.53\cdot 10^{-5} $ $ 1.95 $ $ 4.06\cdot 10^{-4} $ $ 0.96 $ $ 7.53\cdot 10^{-6} $ $ 3.19 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 0.98 $ $ 6.41\cdot 10^{-6} $ $ 1.98 $ $ 2.04\cdot 10^{-4} $ $ 0.99 $ $ 2.05\cdot 10^{-6} $ $ 1.88 $
Table 3.  Convergence results for the fully implicit scheme on the fine mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.05\cdot 10^{-2} $ $ 3.62\cdot 10^{-2} $ $ 2.28\cdot 10^{-1} $ $ 2.26\cdot 10^{-1} $
$ 0.025 $ $ 4.87\cdot 10^{-2} $ $ 0.89 $ $ 5.05\cdot 10^{-3} $ $ 2.84 $ $ 6.23\cdot 10^{-2} $ $ 1.87 $ $ 6.04\cdot 10^{-2} $ $ 1.91 $
$ 0.0125 $ $ 2.54\cdot 10^{-2} $ $ 0.94 $ $ 1.20\cdot 10^{-3} $ $ 2.07 $ $ 2.28\cdot 10^{-2} $ $ 1.45 $ $ 2.07\cdot 10^{-2} $ $ 1.54 $
$ 0.00625 $ $ 1.29\cdot 10^{-2} $ $ 0.98 $ $ 3.53\cdot 10^{-4} $ $ 1.77 $ $ 5.27\cdot 10^{-3} $ $ 2.11 $ $ 4.03\cdot 10^{-3} $ $ 2.36 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.98\cdot 10^{-3} $ $ 5.19\cdot 10^{-4} $ $ 1.65\cdot 10^{-3} $ $ 4.04\cdot 10^{-4} $
$ 0.025 $ $ 1.05\cdot 10^{-3} $ $ 0.92 $ $ 9.79\cdot 10^{-5} $ $ 2.41 $ $ 9.27\cdot 10^{-4} $ $ 0.84 $ $ 8.48\cdot 10^{-5} $ $ 2.25 $
$ 0.0125 $ $ 5.31\cdot 10^{-4} $ $ 0.99 $ $ 3.13\cdot 10^{-5} $ $ 1.64 $ $ 4.90\cdot 10^{-4} $ $ 0.92 $ $ 2.47\cdot 10^{-5} $ $ 1.78 $
$ 0.00625 $ $ 2.70\cdot 10^{-4} $ $ 0.98 $ $ 1.35\cdot 10^{-5} $ $ 1.22 $ $ 2.50\cdot 10^{-4} $ $ 0.97 $ $ 3.47\cdot 10^{-6} $ $ 2.83 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.05\cdot 10^{-2} $ $ 3.62\cdot 10^{-2} $ $ 2.28\cdot 10^{-1} $ $ 2.26\cdot 10^{-1} $
$ 0.025 $ $ 4.87\cdot 10^{-2} $ $ 0.89 $ $ 5.05\cdot 10^{-3} $ $ 2.84 $ $ 6.23\cdot 10^{-2} $ $ 1.87 $ $ 6.04\cdot 10^{-2} $ $ 1.91 $
$ 0.0125 $ $ 2.54\cdot 10^{-2} $ $ 0.94 $ $ 1.20\cdot 10^{-3} $ $ 2.07 $ $ 2.28\cdot 10^{-2} $ $ 1.45 $ $ 2.07\cdot 10^{-2} $ $ 1.54 $
$ 0.00625 $ $ 1.29\cdot 10^{-2} $ $ 0.98 $ $ 3.53\cdot 10^{-4} $ $ 1.77 $ $ 5.27\cdot 10^{-3} $ $ 2.11 $ $ 4.03\cdot 10^{-3} $ $ 2.36 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.98\cdot 10^{-3} $ $ 5.19\cdot 10^{-4} $ $ 1.65\cdot 10^{-3} $ $ 4.04\cdot 10^{-4} $
$ 0.025 $ $ 1.05\cdot 10^{-3} $ $ 0.92 $ $ 9.79\cdot 10^{-5} $ $ 2.41 $ $ 9.27\cdot 10^{-4} $ $ 0.84 $ $ 8.48\cdot 10^{-5} $ $ 2.25 $
$ 0.0125 $ $ 5.31\cdot 10^{-4} $ $ 0.99 $ $ 3.13\cdot 10^{-5} $ $ 1.64 $ $ 4.90\cdot 10^{-4} $ $ 0.92 $ $ 2.47\cdot 10^{-5} $ $ 1.78 $
$ 0.00625 $ $ 2.70\cdot 10^{-4} $ $ 0.98 $ $ 1.35\cdot 10^{-5} $ $ 1.22 $ $ 2.50\cdot 10^{-4} $ $ 0.97 $ $ 3.47\cdot 10^{-6} $ $ 2.83 $
Table 4.  Maximum iterates of the nonlinear solver on the coarse mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 5 $ $ 5 $ $ 4 $ $ 7 $
$ 0.025 $ $ 4 $ $ 4 $ $ 3 $ $ 4 $
$ 0.0125 $ $ 3 $ $ 3 $ $ 3 $ $ 3 $
$ 0.00625 $ $ 3 $ $ 3 $ $ 2 $ $ 3 $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 5 $ $ 5 $ $ 4 $ $ 7 $
$ 0.025 $ $ 4 $ $ 4 $ $ 3 $ $ 4 $
$ 0.0125 $ $ 3 $ $ 3 $ $ 3 $ $ 3 $
$ 0.00625 $ $ 3 $ $ 3 $ $ 2 $ $ 3 $
Table 5.  Maximum iterates of the nonlinear solver on the fine mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 10 $ $ 5 $ $ 6 $ $ 6 $
$ 0.025 $ $ 6 $ $ 5 $ $ 5 $ $ 4 $
$ 0.0125 $ $ 6 $ $ 4 $ $ 4 $ $ 4 $
$ 0.00625 $ $ 4 $ $ 4 $ $ 3 $ $ 3 $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 10 $ $ 5 $ $ 6 $ $ 6 $
$ 0.025 $ $ 6 $ $ 5 $ $ 5 $ $ 4 $
$ 0.0125 $ $ 6 $ $ 4 $ $ 4 $ $ 4 $
$ 0.00625 $ $ 4 $ $ 4 $ $ 3 $ $ 3 $
Table 6.  Convergence results for the semi-implicit scheme on the coarse mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.78\cdot 10^{-2} $ $ 3.05\cdot 10^{-2} $ $ 2.49\cdot 10^{-1} $ $ 2.58\cdot 10^{-1} $
$ 0.025 $ $ 4.17\cdot 10^{-2} $ $ 0.90 $ $ 7.89\cdot 10^{-3} $ $ 1.95 $ $ 6.24\cdot 10^{-2} $ $ 2.00 $ $ 6.74\cdot 10^{-2} $ $ 1.94 $
$ 0.0125 $ $ 2.17\cdot 10^{-2} $ $ 0.95 $ $ 3.14\cdot 10^{-3} $ $ 1.33 $ $ 1.24\cdot 10^{-2} $ $ 2.33 $ $ 2.64\cdot 10^{-2} $ $ 1.35 $
$ 0.00625 $ $ 1.10\cdot 10^{-2} $ $ 0.97 $ $ 1.29\cdot 10^{-3} $ $ 1.29 $ $ 2.25\cdot 10^{-3} $ $ 2.47 $ $ 3.18\cdot 10^{-3} $ $ 3.06 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.67\cdot 10^{-3} $ $ 6.79\cdot 10^{-4} $ $ 1.44\cdot 10^{-3} $ $ 3.52\cdot 10^{-4} $
$ 0.025 $ $ 8.65\cdot 10^{-4} $ $ 0.95 $ $ 2.70\cdot 10^{-4} $ $ 1.33 $ $ 7.91\cdot 10^{-4} $ $ 0.86 $ $ 2.60\cdot 10^{-4} $ $ 0.44 $
$ 0.0125 $ $ 4.36\cdot 10^{-4} $ $ 0.99 $ $ 1.24\cdot 10^{-4} $ $ 1.12 $ $ 4.05\cdot 10^{-4} $ $ 0.97 $ $ 1.53\cdot 10^{-5} $ $ 4.08 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 1.01 $ $ 5.71\cdot 10^{-5} $ $ 1.12 $ $ 2.05\cdot 10^{-4} $ $ 0.98 $ $ 9.43\cdot 10^{-6} $ $ 0.70 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 7.78\cdot 10^{-2} $ $ 3.05\cdot 10^{-2} $ $ 2.49\cdot 10^{-1} $ $ 2.58\cdot 10^{-1} $
$ 0.025 $ $ 4.17\cdot 10^{-2} $ $ 0.90 $ $ 7.89\cdot 10^{-3} $ $ 1.95 $ $ 6.24\cdot 10^{-2} $ $ 2.00 $ $ 6.74\cdot 10^{-2} $ $ 1.94 $
$ 0.0125 $ $ 2.17\cdot 10^{-2} $ $ 0.95 $ $ 3.14\cdot 10^{-3} $ $ 1.33 $ $ 1.24\cdot 10^{-2} $ $ 2.33 $ $ 2.64\cdot 10^{-2} $ $ 1.35 $
$ 0.00625 $ $ 1.10\cdot 10^{-2} $ $ 0.97 $ $ 1.29\cdot 10^{-3} $ $ 1.29 $ $ 2.25\cdot 10^{-3} $ $ 2.47 $ $ 3.18\cdot 10^{-3} $ $ 3.06 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 1.67\cdot 10^{-3} $ $ 6.79\cdot 10^{-4} $ $ 1.44\cdot 10^{-3} $ $ 3.52\cdot 10^{-4} $
$ 0.025 $ $ 8.65\cdot 10^{-4} $ $ 0.95 $ $ 2.70\cdot 10^{-4} $ $ 1.33 $ $ 7.91\cdot 10^{-4} $ $ 0.86 $ $ 2.60\cdot 10^{-4} $ $ 0.44 $
$ 0.0125 $ $ 4.36\cdot 10^{-4} $ $ 0.99 $ $ 1.24\cdot 10^{-4} $ $ 1.12 $ $ 4.05\cdot 10^{-4} $ $ 0.97 $ $ 1.53\cdot 10^{-5} $ $ 4.08 $
$ 0.00625 $ $ 2.17\cdot 10^{-4} $ $ 1.01 $ $ 5.71\cdot 10^{-5} $ $ 1.12 $ $ 2.05\cdot 10^{-4} $ $ 0.98 $ $ 9.43\cdot 10^{-6} $ $ 0.70 $
Table 7.  Convergence results for the semi-implicit scheme on the fine mesh
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.18\cdot 10^{-2} $ $ 3.89\cdot 10^{-2} $ $ 2.36\cdot 10^{-1} $ $ 2.39\cdot 10^{-1} $
$ 0.025 $ $ 5.05\cdot 10^{-2} $ $ 0.86 $ $ 8.59\cdot 10^{-3} $ $ 2.18 $ $ 7.54\cdot 10^{-2} $ $ 1.64 $ $ 7.06\cdot 10^{-2} $ $ 1.76 $
$ 0.0125 $ $ 2.63\cdot 10^{-2} $ $ 0.94 $ $ 3.32\cdot 10^{-3} $ $ 1.37 $ $ 4.24\cdot 10^{-2} $ $ 0.83 $ $ 2.22\cdot 10^{-2} $ $ 1.67 $
$ 0.00625 $ $ 1.33\cdot 10^{-2} $ $ 0.98 $ $ 1.40\cdot 10^{-3} $ $ 1.24 $ $ 2.19\cdot 10^{-2} $ $ 0.96 $ $ 4.19\cdot 10^{-3} $ $ 2.40 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 2.03\cdot 10^{-3} $ $ 7.86\cdot 10^{-4} $ $ 1.81\cdot 10^{-3} $ $ 6.51\cdot 10^{-4} $
$ 0.025 $ $ 1.06\cdot 10^{-3} $ $ 0.93 $ $ 3.28\cdot 10^{-4} $ $ 1.26 $ $ 9.75\cdot 10^{-4} $ $ 0.89 $ $ 1.31\cdot 10^{-4} $ $ 2.31 $
$ 0.0125 $ $ 5.34\cdot 10^{-4} $ $ 1.00 $ $ 1.44\cdot 10^{-4} $ $ 1.18 $ $ 5.10\cdot 10^{-4} $ $ 0.93 $ $ 4.82\cdot 10^{-5} $ $ 1.44 $
$ 0.00625 $ $ 2.69\cdot 10^{-4} $ $ 0.99 $ $ 6.31\cdot 10^{-5} $ $ 1.19 $ $ 2.55\cdot 10^{-4} $ $ 1.00 $ $ 1.29\cdot 10^{-5} $ $ 1.90 $
Fluid velocity
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 9.18\cdot 10^{-2} $ $ 3.89\cdot 10^{-2} $ $ 2.36\cdot 10^{-1} $ $ 2.39\cdot 10^{-1} $
$ 0.025 $ $ 5.05\cdot 10^{-2} $ $ 0.86 $ $ 8.59\cdot 10^{-3} $ $ 2.18 $ $ 7.54\cdot 10^{-2} $ $ 1.64 $ $ 7.06\cdot 10^{-2} $ $ 1.76 $
$ 0.0125 $ $ 2.63\cdot 10^{-2} $ $ 0.94 $ $ 3.32\cdot 10^{-3} $ $ 1.37 $ $ 4.24\cdot 10^{-2} $ $ 0.83 $ $ 2.22\cdot 10^{-2} $ $ 1.67 $
$ 0.00625 $ $ 1.33\cdot 10^{-2} $ $ 0.98 $ $ 1.40\cdot 10^{-3} $ $ 1.24 $ $ 2.19\cdot 10^{-2} $ $ 0.96 $ $ 4.19\cdot 10^{-3} $ $ 2.40 $
Structure deformation
$\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ \Delta t $ $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate $ L^2 $ error rate
$ 0.05 $ $ 2.03\cdot 10^{-3} $ $ 7.86\cdot 10^{-4} $ $ 1.81\cdot 10^{-3} $ $ 6.51\cdot 10^{-4} $
$ 0.025 $ $ 1.06\cdot 10^{-3} $ $ 0.93 $ $ 3.28\cdot 10^{-4} $ $ 1.26 $ $ 9.75\cdot 10^{-4} $ $ 0.89 $ $ 1.31\cdot 10^{-4} $ $ 2.31 $
$ 0.0125 $ $ 5.34\cdot 10^{-4} $ $ 1.00 $ $ 1.44\cdot 10^{-4} $ $ 1.18 $ $ 5.10\cdot 10^{-4} $ $ 0.93 $ $ 4.82\cdot 10^{-5} $ $ 1.44 $
$ 0.00625 $ $ 2.69\cdot 10^{-4} $ $ 0.99 $ $ 6.31\cdot 10^{-5} $ $ 1.19 $ $ 2.55\cdot 10^{-4} $ $ 1.00 $ $ 1.29\cdot 10^{-5} $ $ 1.90 $
Table 8.  Maximum residual in the semi-implicit scheme on the coarse mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.83\cdot 10^{-3} $ $ 3.83\cdot 10^{-3} $ $ 9.87\cdot 10^{-3} $ $ 9.64\cdot 10^{-2} $
$ 0.025 $ $ 2.09\cdot 10^{-3} $ $ 2.30\cdot 10^{-3} $ $ 1.24\cdot 10^{-3} $ $ 2.17\cdot 10^{-2} $
$ 0.0125 $ $ 7.41\cdot 10^{-4} $ $ 8.26\cdot 10^{-4} $ $ 3.62\cdot 10^{-4} $ $ 7.90\cdot 10^{-3} $
$ 0.00625 $ $ 2.23\cdot 10^{-4} $ $ 2.45\cdot 10^{-4} $ $ 1.08\cdot 10^{-4} $ $ 9.55\cdot 10^{-4} $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.83\cdot 10^{-3} $ $ 3.83\cdot 10^{-3} $ $ 9.87\cdot 10^{-3} $ $ 9.64\cdot 10^{-2} $
$ 0.025 $ $ 2.09\cdot 10^{-3} $ $ 2.30\cdot 10^{-3} $ $ 1.24\cdot 10^{-3} $ $ 2.17\cdot 10^{-2} $
$ 0.0125 $ $ 7.41\cdot 10^{-4} $ $ 8.26\cdot 10^{-4} $ $ 3.62\cdot 10^{-4} $ $ 7.90\cdot 10^{-3} $
$ 0.00625 $ $ 2.23\cdot 10^{-4} $ $ 2.45\cdot 10^{-4} $ $ 1.08\cdot 10^{-4} $ $ 9.55\cdot 10^{-4} $
Table 9.  Maximum residual in the semi-implicit scheme on the fine mesh
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.59\cdot 10^{-2} $ $ 3.59\cdot 10^{-2} $ $ 3.43\cdot 10^{-2} $ $ 3.81\cdot 10^{-2} $
$ 0.025 $ $ 1.03\cdot 10^{-2} $ $ 1.07\cdot 10^{-2} $ $ 8.19\cdot 10^{-3} $ $ 1.02\cdot 10^{-2} $
$ 0.0125 $ $ 5.28\cdot 10^{-3} $ $ 5.87\cdot 10^{-3} $ $ 1.54\cdot 10^{-3} $ $ 2.27\cdot 10^{-3} $
$ 0.00625 $ $ 1.46\cdot 10^{-3} $ $ 1.44\cdot 10^{-3} $ $ 4.33\cdot 10^{-4} $ $ 5.08\cdot 10^{-4} $
$ \Delta t $ $\mathsf{BDF1}$ $\mathsf{BDF2}$ $\mathsf{CNm}$ $\mathsf{CNt}$
$ 0.05 $ $ 3.59\cdot 10^{-2} $ $ 3.59\cdot 10^{-2} $ $ 3.43\cdot 10^{-2} $ $ 3.81\cdot 10^{-2} $
$ 0.025 $ $ 1.03\cdot 10^{-2} $ $ 1.07\cdot 10^{-2} $ $ 8.19\cdot 10^{-3} $ $ 1.02\cdot 10^{-2} $
$ 0.0125 $ $ 5.28\cdot 10^{-3} $ $ 5.87\cdot 10^{-3} $ $ 1.54\cdot 10^{-3} $ $ 2.27\cdot 10^{-3} $
$ 0.00625 $ $ 1.46\cdot 10^{-3} $ $ 1.44\cdot 10^{-3} $ $ 4.33\cdot 10^{-4} $ $ 5.08\cdot 10^{-4} $
[1]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[2]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[3]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[4]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[5]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[6]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[9]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[16]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[17]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[18]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]