Dynamic observers are considered in the context of structured-population modeling and management. Roughly, observers combine a known measured variable of some process with a model of that process to asymptotically reconstruct the unknown state variable of the model. We investigate the potential use of observers for reconstructing population distributions described by density-independent (linear) models and a class of density-dependent (nonlinear) models. In both the density-dependent and -independent cases, we show, in several ecologically reasonable circumstances, that there is a natural, optimal construction of these observers. Further, we describe the robustness these observers exhibit with respect to disturbances and uncertainty in measurement.
Citation: |
Figure 5.1.
Numerical simulations from Example 5.1. Abundances from the model (LO) are plotted against time. The solid line and dotted lines are the abundance of the eighth stage-class
Figure 5.2.
Numerical simulations from Example 5.2. In both panels, the solid, dashed, dashed-dotted and dotted lines denote the total population
[1] |
D. Angeli, A Lyapunov approach to incremental stability properties, IEEE Trans. Automat. Control, 47 (2002), 410-421.
doi: 10.1109/9.989067.![]() ![]() ![]() |
[2] |
M. Arcak and P. Kokotovic, Observer-based control of systems with slope-restricted nonlinearities, IEEE Trans. Automat. Control, 46 (2001), 1146-1150.
doi: 10.1109/9.935073.![]() ![]() ![]() |
[3] |
A. Berman, M. Neumann and R. J. Stern, Nonnegative Matrices in Dynamic Systems, John Wiley & Sons Inc., New York, 1989.
![]() ![]() |
[4] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
doi: 10.1137/1.9781611971262.![]() ![]() ![]() |
[5] |
G. E. P. Box, G. M. Jenkins, G. C. Reinsel and G. M. Ljung, Time Series Analysis, fifth edn., John Wiley & Sons, Inc., Hoboken, 2016.
![]() ![]() |
[6] |
H. Caswell, Matrix Population Models : Construction, Analysis and Interpretation, Sinauer, Massachusetts, 2001.
![]() |
[7] |
I. Chadès, E. McDonald-Madden, M. A. McCarthy, B. Wintle, M. Linkie and H. P. Possingham, When to stop managing or surveying cryptic threatened species, Proc. Nat. Acad. Sci., 105 (2008), 13936-13940.
![]() |
[8] |
T. Chen and B. Francis, Optimal Sampled-Data Control Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1996.
![]() ![]() |
[9] |
C. k. Chui and G. Chen, Kalman Filtering, with Real-Time Applications, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-662-02666-3.![]() ![]() ![]() |
[10] |
K. R. Crooks, M. A. Sanjayan and D. F. Doak, New insights on cheetah conservation through demographic modeling, Conservation Biology, 12 (1998), 889-895.
![]() |
[11] |
J. M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998.
doi: 10.1137/1.9781611970005.![]() ![]() ![]() |
[12] |
S. N. Dashkovskiy, D. V. Efimov and E. D. Sontag., Input-to-state stability and allied system properties, Autom. Remote Control, 72 (2011), 1579-1614.
doi: 10.1134/S0005117911080017.![]() ![]() ![]() |
[13] |
N. Dautrebande and G. Bastin, Positive linear observers for positive linear systems, Proceedings of the European Control Conference, 1999, 1092–1095.
![]() |
[14] |
E. A. Eager, Modelling and analysis of population dynamics using Lur'e systems accounting for competition from adult conspecifics, Lett. Biomath., 3 (2016), 41-58.
doi: 10.30707/LiB3.1Eager.![]() ![]() ![]() |
[15] |
E. A. Eager and R. Rebarber, Sensitivity and elasticity analysis of a Lur'e system used to model a population subject to density-dependent reproduction, Math. Biosci., 282 (2016), 34-45.
doi: 10.1016/j.mbs.2016.09.016.![]() ![]() ![]() |
[16] |
E. A. Eager, R. Rebarber and B. Tenhumberg, Global asymptotic stability of plant-seed bank models, J. Math. Biology, 69 (2014), 1-37.
doi: 10.1007/s00285-013-0689-z.![]() ![]() ![]() |
[17] |
M. R. Easterling, S. P. Ellner and P. M. Dixon, Size-specific sensitivity: Applying a new structured population model, Ecology, 81 (2000), 694-708.
![]() |
[18] |
X. Fan and M. Arcak, Observer design for systems with multivariable monotone nonlinearities, Systems Control Lett., 50 (2003), 319-330.
doi: 10.1016/S0167-6911(03)00170-1.![]() ![]() ![]() |
[19] |
L. Farina and S.Rinaldi, Positive Linear Systems: Theory and Applications, Wiley-Interscience, New York, 2000.
doi: 10.1002/9781118033029.![]() ![]() ![]() |
[20] |
D. Franco, C. Guiver, H. Logemann and J. Perán, Semi-global persistence and stability for a class of forced discrete-time population models, Phys. D, 360 (2017), 46-61.
doi: 10.1016/j.physd.2017.08.001.![]() ![]() ![]() |
[21] |
D. Franco, C. Guiver, H. Logemann and J. Perán., Boundedness, persistence and stability for classes of forced difference equations arising in population ecology, J. Math. Biol., 79 (2019), 1029-1076.
doi: 10.1007/s00285-019-01388-7.![]() ![]() ![]() |
[22] |
D. Franco, H. Logemann and J. Perán, Global stability of an age-structured population model, Systems Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012.![]() ![]() ![]() |
[23] |
M. E. Gilmore, C. Guiver and H. Logemann, Stability and convergence properties of forced infinite-dimensional discrete-time Lur'e systems, Int. J. Control, (2019), 1–40.
![]() |
[24] |
J. L. Gouzé, A. Rapaport and M. Z. Hadj-Sadok, Interval observers for uncertain biological systems, Ecol. Modelling, 133 (2000), 45-56.
doi: 10.1016/S0304-3800(00)00279-9.![]() ![]() |
[25] |
C. Guiver, D. Hodgson and S. Townley, Positive state controllability of positive linear systems, Systems Control Lett., 65 (2014), 23-29.
doi: 10.1016/j.sysconle.2013.12.002.![]() ![]() ![]() |
[26] |
C. Guiver, C. Edholm, Y. Jin, M. Mueller, J. Powell, R. Rebarber, B. Tenhumberg and S. Townley, Simple adaptive control for positive linear systems with applications to pest management, SIAM J. Appl. Math, 76 (2016), 238-275.
doi: 10.1137/140996926.![]() ![]() ![]() |
[27] |
C. Guiver, H. Logemann, R. Rebarber, A. Bill, B. Tenhumberg, D. Hodgson and S. Townley, Integral control for population management, J. Math. Biol., 70 (2005), 1015-1063.
doi: 10.1007/s00285-014-0789-4.![]() ![]() ![]() |
[28] |
C. Guiver, H. Logemann and B. Rüffer, Small-gain stability theorems for positive Lur'e inclusions, Positivity, 23 (2019), 249–289.
doi: 10.1007/s11117-018-0605-2.![]() ![]() ![]() |
[29] |
W. M. Haddad, V. Chellaboina and Q. Hui, Nonnegative and Compartmental Dynamical
Systems, Princeton University Press, Princeton, 2010.
doi: 10.1515/9781400832248.![]() ![]() ![]() |
[30] |
M. Z. Hadj-Sadok and J. L. Gouzé, Estimation of uncertain models of activated sludge processes with interval observers, J. Process Control, 11 (2001), 299-310.
doi: 10.1016/S0959-1524(99)00074-8.![]() ![]() |
[31] |
E. Halfon (ed), Theoretical Systems Ecology, Academic Press, New York, 1979.
![]() |
[32] |
H. R. Heinimann, A concept in adaptive ecosystem management — An engineering perspective, Forest Ecol. Manag., 259 (2010), 848-856.
doi: 10.1016/j.foreco.2009.09.032.![]() ![]() |
[33] |
D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, Springer–Verlag, Berlin, 2005.
doi: 10.1007/b137541.![]() ![]() ![]() |
[34] |
D. Hinrichsen and N. K. Son, Stability radii of positive discrete-time systems, Internat. J. Robust Nonlinear Control, 8 (1995).
![]() |
[35] |
S. Ibrir, Circle-criterion approach to discrete-time nonlinear observer design, Automatica, 43 (2007), 1432-1441.
doi: 10.1016/j.automatica.2007.01.012.![]() ![]() ![]() |
[36] |
R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Engineering (ASME), 82 60), 34–45.
doi: 10.1115/1.3662552.![]() ![]() ![]() |
[37] |
I. Karafyllis and Z.-P. Jiang, Stability and Stabilization of Nonlinear Systems, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-513-2.![]() ![]() ![]() |
[38] |
N. Keyfitz and H. Caswell, Applied Mathematical Demography, Springer Science+Business Media, Inc., 2005.
![]() |
[39] |
R Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen and A. Kojic, Electrochemical model based observer design for a lithium-ion battery, IEEE Trans. Control Syst. Technol., 21 (2013), 289-301.
doi: 10.1109/TCST.2011.2178604.![]() ![]() |
[40] |
A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett., 3 (1983), 47-52.
doi: 10.1016/0167-6911(83)90037-3.![]() ![]() ![]() |
[41] |
T. Liao and N. Huang, An observer-based approach for chaotic synchronization with applications to secure communications, IEEE Trans. Circuits Syst. I, 46 (1999), 1144–1150.
doi: 10.1109/81.788817.![]() ![]() |
[42] |
L. Ljung, System Identification: Theory for the User, Prentice Hall Information and System Sciences Series. Prentice Hall, Inc., Englewood Cliffs, NJ, 1987.
![]() ![]() |
[43] |
D. Luenberger, An introduction to observers, IEEE Trans. Automat. Control, 16 (1971), 596-602.
doi: 10.1109/TAC.1971.1099826.![]() ![]() |
[44] |
D. Luenberger, Observing the state of a linear system, IEEE Trans. Mil. Electronics, 8 (1964), 74-80.
doi: 10.1109/TME.1964.4323124.![]() ![]() |
[45] |
C. Merow, J. P. Dahlgren, C. J. E. Metcalf, D. Z. Childs, M. E. Evans, E. Jongejans, S. Record, M. Rees, R. Salguero-Gómez and S. M. McMahon, Advancing population ecology with integral projection models: A practical guide, Methods Ecol. Evol., 5 (2014), 99-110.
doi: 10.1111/2041-210X.12146.![]() ![]() |
[46] |
W. F. Morris and D. F. Doak, Quantitative Conservation biology: Theory and Practice of Population Viability Analysis, Sinauer Associates Sunderland, Massachusetts, USA, 2002.
![]() |
[47] |
M. Müller and C. A. Sierra, Application of input to state stability to reservoir models, Theor. Ecol., 10 (2017), 451–475.
doi: 10.1007/s12080-017-0342-3.![]() ![]() |
[48] |
R. A. Myers, Stock and recruitment: Generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches, ICES J. Marine Science, 58 (2001), 937-951.
doi: 10.1006/jmsc.2001.1109.![]() ![]() |
[49] |
I. M. Navon, Data assimilation for numerical weather prediction: A review, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S.K. Park and L. Xu eds. Springer, Berlin, 2009.
doi: 10.1007/978-3-540-71056-1_2.![]() ![]() |
[50] |
N. Poppelreiter, Dynamic Observers for Unknown Populations, Phd Thesis, University of Nebraska, Lincoln, 2019.
![]() |
[51] |
M. A. Rami and F. Tadeo, Positive observation problem for linear discrete positive systems, in Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, (2006).
doi: 10.1109/CDC.2006.377749.![]() ![]() |
[52] |
P. Reichert and M. Omlin, On the usefulness of overparameterized ecological models, Ecol. Mod., 95 (1997), 289-299.
doi: 10.1016/S0304-3800(96)00043-9.![]() ![]() |
[53] |
K. E. Rose, S. M. Louda and M. Rees, Demographic and evolutionary impacts of native and invasive insect herbivores on cirsium canescens, Ecology, 86 (2005), 453-465.
doi: 10.1890/03-0697.![]() ![]() |
[54] |
M. de la Sen, Non-periodic and adaptive sampling. A tutorial review, Informatica, 7 (1996), 175-228.
![]() ![]() |
[55] |
H. L. Smith and H. R. Thieme, Persistence and global stability for a class of discrete time structured population models, Discrete Contin. Dyn. Syst., 33 (2013), 4627-4646.
doi: 10.3934/dcds.2013.33.4627.![]() ![]() ![]() |
[56] |
T. Söderström and P. Stoica, System Identification, Prentice-Hall, Inc., London, 1989.
![]() |
[57] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018.![]() ![]() ![]() |
[58] |
E. D. Sontag, Input-to-state stability: Basic concepts and results, in Nonlinear and Optimal Control Theory, 163–220, Lecture Notes in Math., 1932, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-77653-6_3.![]() ![]() ![]() |
[59] |
E. D. Sontag, Mathematical Control Theory, second ed., Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7.![]() ![]() ![]() |
[60] |
M. Soroush, Nonlinear state-observer design with application to reactors, Chemical Engineering Science, 52 (1997), 387-404.
doi: 10.1016/S0009-2509(96)00391-0.![]() ![]() |
[61] |
I. Stott, S. Townley, D. Carslake and D. J. Hodgson, On reducibility and ergodicity of population projection matrix models, Methods Ecol. Evol., 1 (2010), 242-252.
doi: 10.1111/j.2041-210X.2010.00032.x.![]() ![]() |
[62] |
F. Tadeo and M. Rami, Selection of time-after-injection in bone scanning using compartmental observers, in Proceeding of World Engineering Congress, WCE (2010).
![]() |
[63] |
B. Tenhumberg, S. Louda, J. Eckberg and M. Takahashi, Monte carlo analysys of parameter uncertainy in matrix models for the weed, J. Appl. Ecol., 45 (2008), 439-447.
![]() |
[64] |
S. Townley, R. Rebarber and B. Tenhumberg, Feedback control systems analysis of density dependent population dynamics, Systems Control Lett., 61 (2012), 309-315.
doi: 10.1016/j.sysconle.2011.11.014.![]() ![]() ![]() |
[65] |
H. L. Trentelman, A. A. Stoorvogel and M. Hautus, Control Theory for Linear Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 2001.
doi: 10.1007/978-1-4471-0339-4.![]() ![]() ![]() |
[66] |
J. M. Van Den Hof, Positive linear observers for linear compartmental systems, SIAM J. Control Optim., 36 (1998), 590-608.
doi: 10.1137/S036301299630611X.![]() ![]() ![]() |
[67] |
X.-H. Xia and W.-B. Gao., Nonlinear observer design by observer error linearization, SIAM J. Control Optim., 27 (1989), 199-216.
doi: 10.1137/0327011.![]() ![]() ![]() |
[68] |
J. I. Yuz and G. C. Goodwin, Sampled-Data Models for Linear and Nonlinear Systems, Communications and Control Engineering Series, Springer, London, 2014.
doi: 10.1007/978-1-4471-5562-1.![]() ![]() ![]() |
[69] |
J. Zhang, X. Zhao, R. Zhang and Y. Chen, Improved controller design for uncertain positive systems and its extension to uncertain positive switched systems, Asian J. Control, 20 (2018), 159-173.
doi: 10.1002/asjc.1553.![]() ![]() ![]() |