-
Previous Article
Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise
- DCDS-B Home
- This Issue
-
Next Article
On existence and uniqueness properties for solutions of stochastic fixed point equations
Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise
School of Mathematics, Shandong University, Jinan 250100, China |
This paper investigates mainly the long term behavior of the non-autonomous random Ginzburg-Landau equation driven by nonlinear colored noise on unbounded domains. Due to the noncompactness of Sobolev embeddings on unbounded domains, pullback asymptotic compactness of random dynamical system associated with such random Ginzburg-Landau equation is proved by the tail-estimates method. Moreover, it is proved that the pullback random attractor of the non-autonomous random Ginzburg-Landau equation driven by a linear multiplicative colored noise converges to that of the corresponding stochastic system driven by a linear multiplicative white noise.
References:
[1] |
P. Acquistapace and B. Terreni,
An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), 131-186.
doi: 10.1080/07362998408809031. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält,
On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 44 (1990), 421-444.
doi: 10.1016/0167-2789(90)90156-J. |
[4] |
D. Blömker and Y. Han,
Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain, Stoch. Dyn., 10 (2010), 613-636.
doi: 10.1142/S0219493710003121. |
[5] |
C. Bu,
On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Austral. Math. Soc. Ser. B, 36 (1995), 313-324.
doi: 10.1017/S0334270000010468. |
[6] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[7] |
C. R. Doering, J. D. Gibbon and C. D. Levermore,
Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.
doi: 10.1016/0167-2789(94)90150-3. |
[8] |
J. Duan, E. S. Titi and P. Holmes,
Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity, 6 (1993), 915-933.
doi: 10.1088/0951-7715/6/6/005. |
[9] |
J. Duan and P. Holmes,
On the Cauchy problem of a generalized Ginzburg-Landau equation, Nonlinear Anal., 22 (1994), 1033-1040.
doi: 10.1016/0362-546X(94)90065-5. |
[10] |
J. Duan, P. Holmes and E. S. Titi,
Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 5 (1992), 1303-1314.
doi: 10.1088/0951-7715/5/6/005. |
[11] |
H. Gao and C. Bu,
A Dirichlet boundary value problem for a generalized Ginzburg-Landau equation, Appl. Math. Lett., 16 (2003), 179-184.
doi: 10.1016/S0893-9659(03)80029-0. |
[12] |
A. Gu and B. Wang,
Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072. |
[13] |
A. Gu and B. Wang, Random attractors of FitzHugh-Nagumo systems driven by colored noise on unbounded domains, Stoch. Dyn., 19 (2019), 1950035, 38.
doi: 10.1142/S0219493719500357. |
[14] |
A. Gu, K. Lu and B. Wang,
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
doi: 10.3934/dcds.2019008. |
[15] |
B. Guo, G. Wang and D. Li,
The attractor of the stochastic generalized Ginzburg-Landau equation, Sci. China Ser. A: Math., 51 (2008), 955-964.
doi: 10.1007/s11425-007-0181-6. |
[16] |
Y. F. Guo and D. L. Li,
Random attractor of stochastic complex Ginzburg-Landau equation with multiplicative noise on unbounded domain, Stoch. Anal. Appl., 35 (2017), 409-422.
doi: 10.1080/07362994.2016.1259075. |
[17] |
T. Jiang, X. Liu and J. Duan,
Approximation for random stable manifolds under multiplicative correlated noises, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3163-3174.
doi: 10.3934/dcdsb.2016091. |
[18] |
M. M. Kłosek-Dygas, B. J. Matkowsky and Z. Schuss,
Colored noise in dynamical systems, SIAM J. Appl. Math., 48 (1988), 425-441.
doi: 10.1137/0148023. |
[19] |
Y. Lan and J. Shu,
Fractal dimension of random attractors for non-autonomous fractional stochastic {G}inzburg-{L}andau equations with multiplicative noise, Dyn. Syst., 34 (2019), 274-300.
doi: 10.1080/14689367.2018.1523368. |
[20] |
D. Li, Z. Dai and X. Liu,
Long time behaviour for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 330 (2007), 934-948.
doi: 10.1016/j.jmaa.2006.07.095. |
[21] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[22] |
Z. Liu and Z. Qiao,
Wong-Zakai approximation of stochastic Allen-Cahn equation, Int. J. Numer. Anal. Model., 16 (2019), 681-694.
|
[23] |
K. Lu and B. Wang,
Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y. |
[24] |
H. Lu, P. W. Bates, S. Lü and M. Zhang,
Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.
|
[25] |
T. Nakayama and S. Tappe,
Wong-Zakai approximations with convergence rate for stochastic partial differential equations, Stoch. Anal. Appl., 36 (2018), 832-857.
doi: 10.1080/07362994.2018.1471402. |
[26] |
L. Ridolfi, P. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, Cambridge, 2011.
doi: 10.1017/CBO9780511984730. |
[27] |
J. Shen, K. Lu and W. Zhang,
Heteroclinic chaotic behavior driven by a Brownian motion, J. Differential Equations, 255 (2013), 4185-4225.
doi: 10.1016/j.jde.2013.08.003. |
[28] |
J. Shen, J. Zhao, K. Lu and B. Wang,
The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 266 (2019), 4568-4623.
doi: 10.1016/j.jde.2018.10.008. |
[29] |
R. Temam, Navier-Stokes Equations, Revised Edition, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[30] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[31] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099. |
[32] |
G. Wang, B. Guo and Y. Li,
The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.
doi: 10.1016/j.amc.2007.09.029. |
[33] |
M. C. Wang and G. E. Uhlenbeck,
On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323-342.
doi: 10.1103/RevModPhys.17.323. |
[34] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[35] |
X. Wang, K. Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[36] |
D. Yang,
The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, J. Math. Phys., 45 (2004), 4064-4076.
doi: 10.1063/1.1794365. |
[37] |
J. Zhang and J. Shu, Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, J. Math. Phys., 60 (2019), 042702.
doi: 10.1063/1.5037480. |
[38] |
Q. Zhang,
Random attractors for a Ginzburg-Landau equation with additive noise, Chaos Solitons Fractals, 39 (2009), 463-472.
doi: 10.1016/j.chaos.2007.03.001. |
show all references
References:
[1] |
P. Acquistapace and B. Terreni,
An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), 131-186.
doi: 10.1080/07362998408809031. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält,
On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 44 (1990), 421-444.
doi: 10.1016/0167-2789(90)90156-J. |
[4] |
D. Blömker and Y. Han,
Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain, Stoch. Dyn., 10 (2010), 613-636.
doi: 10.1142/S0219493710003121. |
[5] |
C. Bu,
On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Austral. Math. Soc. Ser. B, 36 (1995), 313-324.
doi: 10.1017/S0334270000010468. |
[6] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[7] |
C. R. Doering, J. D. Gibbon and C. D. Levermore,
Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.
doi: 10.1016/0167-2789(94)90150-3. |
[8] |
J. Duan, E. S. Titi and P. Holmes,
Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity, 6 (1993), 915-933.
doi: 10.1088/0951-7715/6/6/005. |
[9] |
J. Duan and P. Holmes,
On the Cauchy problem of a generalized Ginzburg-Landau equation, Nonlinear Anal., 22 (1994), 1033-1040.
doi: 10.1016/0362-546X(94)90065-5. |
[10] |
J. Duan, P. Holmes and E. S. Titi,
Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 5 (1992), 1303-1314.
doi: 10.1088/0951-7715/5/6/005. |
[11] |
H. Gao and C. Bu,
A Dirichlet boundary value problem for a generalized Ginzburg-Landau equation, Appl. Math. Lett., 16 (2003), 179-184.
doi: 10.1016/S0893-9659(03)80029-0. |
[12] |
A. Gu and B. Wang,
Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072. |
[13] |
A. Gu and B. Wang, Random attractors of FitzHugh-Nagumo systems driven by colored noise on unbounded domains, Stoch. Dyn., 19 (2019), 1950035, 38.
doi: 10.1142/S0219493719500357. |
[14] |
A. Gu, K. Lu and B. Wang,
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
doi: 10.3934/dcds.2019008. |
[15] |
B. Guo, G. Wang and D. Li,
The attractor of the stochastic generalized Ginzburg-Landau equation, Sci. China Ser. A: Math., 51 (2008), 955-964.
doi: 10.1007/s11425-007-0181-6. |
[16] |
Y. F. Guo and D. L. Li,
Random attractor of stochastic complex Ginzburg-Landau equation with multiplicative noise on unbounded domain, Stoch. Anal. Appl., 35 (2017), 409-422.
doi: 10.1080/07362994.2016.1259075. |
[17] |
T. Jiang, X. Liu and J. Duan,
Approximation for random stable manifolds under multiplicative correlated noises, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3163-3174.
doi: 10.3934/dcdsb.2016091. |
[18] |
M. M. Kłosek-Dygas, B. J. Matkowsky and Z. Schuss,
Colored noise in dynamical systems, SIAM J. Appl. Math., 48 (1988), 425-441.
doi: 10.1137/0148023. |
[19] |
Y. Lan and J. Shu,
Fractal dimension of random attractors for non-autonomous fractional stochastic {G}inzburg-{L}andau equations with multiplicative noise, Dyn. Syst., 34 (2019), 274-300.
doi: 10.1080/14689367.2018.1523368. |
[20] |
D. Li, Z. Dai and X. Liu,
Long time behaviour for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 330 (2007), 934-948.
doi: 10.1016/j.jmaa.2006.07.095. |
[21] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[22] |
Z. Liu and Z. Qiao,
Wong-Zakai approximation of stochastic Allen-Cahn equation, Int. J. Numer. Anal. Model., 16 (2019), 681-694.
|
[23] |
K. Lu and B. Wang,
Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y. |
[24] |
H. Lu, P. W. Bates, S. Lü and M. Zhang,
Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.
|
[25] |
T. Nakayama and S. Tappe,
Wong-Zakai approximations with convergence rate for stochastic partial differential equations, Stoch. Anal. Appl., 36 (2018), 832-857.
doi: 10.1080/07362994.2018.1471402. |
[26] |
L. Ridolfi, P. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, Cambridge, 2011.
doi: 10.1017/CBO9780511984730. |
[27] |
J. Shen, K. Lu and W. Zhang,
Heteroclinic chaotic behavior driven by a Brownian motion, J. Differential Equations, 255 (2013), 4185-4225.
doi: 10.1016/j.jde.2013.08.003. |
[28] |
J. Shen, J. Zhao, K. Lu and B. Wang,
The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 266 (2019), 4568-4623.
doi: 10.1016/j.jde.2018.10.008. |
[29] |
R. Temam, Navier-Stokes Equations, Revised Edition, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[30] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[31] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099. |
[32] |
G. Wang, B. Guo and Y. Li,
The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.
doi: 10.1016/j.amc.2007.09.029. |
[33] |
M. C. Wang and G. E. Uhlenbeck,
On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323-342.
doi: 10.1103/RevModPhys.17.323. |
[34] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[35] |
X. Wang, K. Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[36] |
D. Yang,
The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, J. Math. Phys., 45 (2004), 4064-4076.
doi: 10.1063/1.1794365. |
[37] |
J. Zhang and J. Shu, Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, J. Math. Phys., 60 (2019), 042702.
doi: 10.1063/1.5037480. |
[38] |
Q. Zhang,
Random attractors for a Ginzburg-Landau equation with additive noise, Chaos Solitons Fractals, 39 (2009), 463-472.
doi: 10.1016/j.chaos.2007.03.001. |
[1] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[2] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[3] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[4] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[5] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[6] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[9] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[10] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[11] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[12] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[13] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[14] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[17] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[18] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[19] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[20] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]