doi: 10.3934/dcdsb.2020235

Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system

1. 

Guangxi Colleges and Universities Key Laboratory of Complex System Optimization, and Big Data Processing, Yulin Normal University, Yulin 537000, China

2. 

College of Science, Guangxi University for Nationalities, Guangxi, 530006, China

3. 

School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China

4. 

Zhejiang Institute, China University of Geosciences, Hangzhou, Zhejiang 311305, China

* Corresponding author: weizhouchao@163.com

Received  January 2020 Revised  May 2020 Published  August 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (Grant No. 11961074), Natural Science Foundation of Guangxi Province (Grant Nos. 2018GXNSFDA281028, 2017GXNSFAA198234), the High Level Innovation Team Program from Guangxi Higher Education Institutions of China (Document No. [2018] 35), and the Science Technology Program of Yulin Normal University (Grant No. 2017YJKY28). The second author is supported by the Postgraduate Innovation Program of Guangxi University for Nationalities (Grant No. GXUN-CHXZS2018042). The third author is supported by National Natural Science Foundation of China (Grant No. 11772306), Zhejiang Provincial Natural Science Foundation of China under Grant (No.LY20A020001), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (CUGGC05)

The present work is devoted to giving new insights into a chaotic system with two stable node-foci, which is named Yang-Chen system. Firstly, based on the global view of the influence of equilibrium point on the complexity of the system, the dynamic behavior of the system at infinity is analyzed. Secondly, the Jacobi stability of the trajectories for the system is discussed from the viewpoint of Kosambi-Cartan-Chern theory (KCC-theory). The dynamical behavior of the deviation vector near the whole trajectories (including all equilibrium points) is analyzed in detail. The obtained results show that in the sense of Jacobi stability, all equilibrium points of the system, including those of the two linear stable node-foci, are Jacobi unstable. These studies show that one might witness chaotic behavior of the system trajectories before they enter in a neighborhood of equilibrium point or periodic orbit. There exists a sort of stability artifact that cannot be found without using the powerful method of Jacobi stability analysis.

Citation: Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020235
References:
[1]

H. Abolghasem, Jacobi stability of circular orbits in a central force, Journal of Dynamical Systems and Geometric Theories, 10 (2012), 197-214.  doi: 10.1080/1726037X.2012.10698621.  Google Scholar

[2]

H. Abolghasem, Liapunov stability versus Jacobi stability, Journal of Dynamical Systems and Geometric Theories, 10 (2012), 13-32.  doi: 10.1080/1726037X.2012.10698604.  Google Scholar

[3]

H. Abolghasem, Jacobi stability of Hamiltonian system, International Journal of Pure and Applied Mathematics, 87 (2013), 181-194.  doi: 10.12732/ijpam.v87i1.11.  Google Scholar

[4]

P. L. AntonelliS. F. Rutz and V. S. Sabau, A transient-state analysis of Tyson's model for the cell division cycle by means of KCC-theory, Open Systems and Information Dynamics, 9 (2002), 223-238.  doi: 10.1023/A:1019752327311.  Google Scholar

[5]

P. L. Antonelli and I. Bucataru, Volterra-Hamilton production models with discounting: General theory and worked examples, Nonlinear Anal. RWA, 2 (2001), 337-356.  doi: 10.1016/S0362-546X(00)00101-2.  Google Scholar

[6]

P. L. AntonelliS. F. Rutz and C. E. Hirakawa, The mathematical theory of endosymbiosis I, Nonlinear Anal. RWA, 12 (2011), 3238-3251.  doi: 10.1016/j.nonrwa.2011.05.023.  Google Scholar

[7]

B. C. BaoH. BaoN. WangM. Chen and Q. Xu, Hidden extreme multistability in memristive hyperchaotic system, Chaos Solitons & Fractals, 94 (2017), 102-111.  doi: 10.1016/j.chaos.2016.11.016.  Google Scholar

[8]

C. G. BoehmerT. Harko and S. V. Sabau, Jacobi stability analysis of dynamical systems-applications in gravitation and cosmology, Advances in Theoretical and Mathematical Physics, 16 (2012), 1145-1196.  doi: 10.4310/ATMP.2012.v16.n4.a2.  Google Scholar

[9]

C. G. Bohmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation, Journal of Nonlinear Mathematical Physics, 17 (2010), 503-516.  doi: 10.1142/S1402925110001100.  Google Scholar

[10]

E. Cartan and D. D. Kosambi, Observations sur le mémoire précédent, Mathematische Zeitschrift, 37 (1933), 619-622.  doi: 10.1007/BF01474603.  Google Scholar

[11]

G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[12]

Y. Chen and Z. B. Yin, The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria, Int. J. Bifurc. Chaos, 29 (2019), 1950062, 10 pp. doi: 10.1142/S0218127419500627.  Google Scholar

[13]

S.-S. Chern, Sur la geometrie d'un systeme d'equations differentielles du second ordre, Bulletin des Sciences Mathematiques, 63 (1939), 206-212.   Google Scholar

[14]

A. Cima and J. Llibre, Bounded polynomial vector fields, Trans. Am. Math. Soc., 318 (1990), 557-579.  doi: 10.1090/S0002-9947-1990-0998352-5.  Google Scholar

[15]

B. Danila, T. Harko, M. K. Mak, P. Pantaragphong and S. V. Sabau, Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background, Advances in High Energy Physics, (2016), Article ID 7521464 26 pp. Google Scholar

[16]

C. Feng, Q. Huang and Y. Liu, Jacobi analysis for an unusual 3D autonomous system, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050062, 20 pp. doi: 10.1142/S0219887820500620.  Google Scholar

[17]

M. K. Gupta and C. K. Yadav, KCC theory and its application in a tumor growth model, Mathematical Methods in the Applied Sciences., 40 (2017), 7470-7487.  doi: 10.1002/mma.4542.  Google Scholar

[18]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of Rössler system, Int. J. Bifurc. Chaos, 27 (2017), 63-76.  doi: 10.1142/S0218127417500560.  Google Scholar

[19]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of modified Chua circuit system, International Journal of Geometric Methods in Modern Physics, 14 (2017), 121-142.  doi: 10.1142/S021988781750089X.  Google Scholar

[20]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of Rikitake system, International Journal of Geometric Methods in Modern Physics, 13 (2016), 1650098. doi: 10.1142/S0219887816500985.  Google Scholar

[21]

M. K. Gupta and C. K. Yadav, Rabinovich-Fabrikant system in view point of KCC theory in Finsler geometry, Journal of Interdisciplinary Mathematics, 22 (2019), 219-241.  doi: 10.1080/09720502.2019.1614249.  Google Scholar

[22]

T. Harko and V. S. Sabau, Jacobi stability of the vacuum in the static spherically symmetric brane world models, Physical Review D, 77 (2008), 104009. doi: 10.1103/PhysRevD.77.104009.  Google Scholar

[23]

T. Harko, C. Y. Ho, C. S. Leung and S. Yip, Jacobi stability analysis of the Lorenz system, International Journal of Geometric Methods in Modern Physics, 12 (2015), 1550081. doi: 10.1142/S0219887815500814.  Google Scholar

[24]

Q. Huang, A. Liu and Y. Liu, Jacobi stability analysis of the Chen system, Int. J. Bifurc. Chaos, 29 (2019), 1950139. doi: 10.1142/S0218127419501396.  Google Scholar

[25]

D. D. Kosambi, Parallelism and path-space, Mathematische Zeitschrift, 37 (1933), 608-618.  doi: 10.1007/BF01474602.  Google Scholar

[26]

M. Kumar, T. N. Mishra and B. Tiwari, Stability analysis of Navier-Stokes system, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950157. doi: 10.1142/S0219887819501573.  Google Scholar

[27]

G. A. Leonov, Lyapunov functions in the global analysis of chaotic systems, Ukrainian Mathematical Journal, 70 (2018), 42-66.  doi: 10.1007/s11253-018-1487-y.  Google Scholar

[28]

C.-L. Li and Y.-B. Zhao, A unified Lorenz-like system and its tracking control, Communications in Theoretical Physics, 63 (2015), 317-324.  doi: 10.1088/0253-6102/63/3/317.  Google Scholar

[29]

X. LiaoG. ZhouQ. YangY. Fu and G. Chen, Constructive proof of Lagrange stability and sufficient-Necessary conditions of Lyapunov stability for Yang-Chen chaotic system, Appl. Math. Comput., 309 (2017), 205-221.  doi: 10.1016/j.amc.2017.03.033.  Google Scholar

[30]

Y. Liu and Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal. Real World Appl., 11 (2010), 2563-2572.  doi: 10.1016/j.nonrwa.2009.09.001.  Google Scholar

[31]

Y. LiuS. Pang and D. Chen, An unusual chaotic system and its control, Mathematical and Computer Modelling, 57 (2013), 2473-2493.  doi: 10.1016/j.mcm.2012.12.006.  Google Scholar

[32]

Y. Liu and Q. Yang, Dynamics of the Lü system on the invariant algebraic surface and at infinity, Int. J. Bifurc. Chaos, 21 (2011), 2559-2582.  doi: 10.1142/S0218127411029938.  Google Scholar

[33]

Y. Liu, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system, Nonlinear Anal. Real World Appl., 13 (2012), 2466-2475.  doi: 10.1016/j.nonrwa.2012.02.011.  Google Scholar

[34]

Y. Liu, Analysis of global dynamics in an unusual 3D chaotic system, Nonlinear Dyn., 70 (2012), 2203-2212.  doi: 10.1007/s11071-012-0610-0.  Google Scholar

[35]

J. Llibre and M. Messias, Global dynamics of the Rikitake system, Physica D, 238 (2009), 241-252.  doi: 10.1016/j.physd.2008.10.011.  Google Scholar

[36]

J. Llibre, M. Messias and P. R. da Silva, On the global dynamics of the Rabinovich system, J. Phys. A, Math. Theor., 41 (2008), 275210. doi: 10.1088/1751-8113/41/27/275210.  Google Scholar

[37]

E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[38]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[39]

Q. LuoX. Liao and Z. Zeng, Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application, Science China Information Sciences, 53 (2010), 1574-1583.  doi: 10.1007/s11432-010-4032-7.  Google Scholar

[40]

M. Messias, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system, J. Phys. A, Math. Theor., 42 (2009), 115101. doi: 10.1088/1751-8113/42/11/115101.  Google Scholar

[41]

M. Messias, Dynamics at infinity of a cubic Chua's system, Int. J. Bifurc. Chaos, 21 (2011), 333-340.  doi: 10.1142/S0218127411028453.  Google Scholar

[42]

S. Oiwa and T. Yajima, Jacobi stability analysis and chaotic behavior of nonlinear double pendulum, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750176. doi: 10.1142/S0219887817501766.  Google Scholar

[43]

O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 57 (1976), 397-398.  doi: 10.1016/0375-9601(76)90101-8.  Google Scholar

[44]

V. S. Sabau, Systems biology and deviation curvature tensor, Nonlinear Anal. RWA, 6 (2005), 563-587.  doi: 10.1016/j.nonrwa.2004.12.012.  Google Scholar

[45]

G. van der Schrier and L. R. Maas, The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map, Physica D, 141 (2000), 19-36.  doi: 10.1016/S0167-2789(00)00033-6.  Google Scholar

[46]

A. Vanevcek and S. Celikovský, Control Systems: From linear analysis to synthesis of chaos, Prentice Hall International (UK) Ltd., (1996), 238-257.   Google Scholar

[47]

T. Yajima and K. Yamasaki, Jacobi stability for dynamical systems of two-dimensional second-order differential equations and application to overhead crane system, International Journal of Geometric Methods in Modern Physics, 13 (2016), 1650045. doi: 10.1142/S0219887816500456.  Google Scholar

[48]

K. Yamasaki and T. Yajima, Lotka–Volterra system and KCC theory: Differential geometric structure of competitions and predations, Nonlinear Analysis: Real World Applications, 14 (2013), 1845-1853.  doi: 10.1016/j.nonrwa.2012.11.015.  Google Scholar

[49]

K. Yamasaki and T. Yajima, Differential geometric structure of non-equilibrium dynamics in competition and predation: Finsler geometry and KCC theory, Journal of Dynamical Systems and Geomatric Theories, 14 (2016), 137-153.  doi: 10.1080/1726037X.2016.1250500.  Google Scholar

[50]

K. Yamasaki and T. Yajima, KCC analysis of the normal form of typical bifurcations in one-dimensional dynamical systems: Geometrical invariants of saddle-node, transcritical, and pitchfork bifurcations, Int. J. Bifurc. Chaos, 27 (2017), 1750145. doi: 10.1142/S0218127417501450.  Google Scholar

[51]

Q. YangG. Chen and T. Zhou, A unified Lorenz-type system and its canonical form, Int. J. Bifurc. Chaos, 16 (2006), 2855-2871.  doi: 10.1142/S0218127406016501.  Google Scholar

[52]

Q. Yang and G. Chen, A chaotic system with one saddle and two stable node-foci, Int. J. Bifurc. Chaos, 18 (2008), 1393-1414.  doi: 10.1142/S0218127408021063.  Google Scholar

[53]

Q. Yang and Y. Liu, A hyperchaotic system from a chaotic system with one saddle and two stable node-foci, Journal of Mathematical Analysis and Applications, 360 (2009), 293-306.  doi: 10.1016/j.jmaa.2009.06.051.  Google Scholar

[54]

Z. Zhang, T. Ding, W. Huang et al., Qualitative Theory of Differential Equations, Science Press, Beijing, in Chinese (1985). Google Scholar

show all references

References:
[1]

H. Abolghasem, Jacobi stability of circular orbits in a central force, Journal of Dynamical Systems and Geometric Theories, 10 (2012), 197-214.  doi: 10.1080/1726037X.2012.10698621.  Google Scholar

[2]

H. Abolghasem, Liapunov stability versus Jacobi stability, Journal of Dynamical Systems and Geometric Theories, 10 (2012), 13-32.  doi: 10.1080/1726037X.2012.10698604.  Google Scholar

[3]

H. Abolghasem, Jacobi stability of Hamiltonian system, International Journal of Pure and Applied Mathematics, 87 (2013), 181-194.  doi: 10.12732/ijpam.v87i1.11.  Google Scholar

[4]

P. L. AntonelliS. F. Rutz and V. S. Sabau, A transient-state analysis of Tyson's model for the cell division cycle by means of KCC-theory, Open Systems and Information Dynamics, 9 (2002), 223-238.  doi: 10.1023/A:1019752327311.  Google Scholar

[5]

P. L. Antonelli and I. Bucataru, Volterra-Hamilton production models with discounting: General theory and worked examples, Nonlinear Anal. RWA, 2 (2001), 337-356.  doi: 10.1016/S0362-546X(00)00101-2.  Google Scholar

[6]

P. L. AntonelliS. F. Rutz and C. E. Hirakawa, The mathematical theory of endosymbiosis I, Nonlinear Anal. RWA, 12 (2011), 3238-3251.  doi: 10.1016/j.nonrwa.2011.05.023.  Google Scholar

[7]

B. C. BaoH. BaoN. WangM. Chen and Q. Xu, Hidden extreme multistability in memristive hyperchaotic system, Chaos Solitons & Fractals, 94 (2017), 102-111.  doi: 10.1016/j.chaos.2016.11.016.  Google Scholar

[8]

C. G. BoehmerT. Harko and S. V. Sabau, Jacobi stability analysis of dynamical systems-applications in gravitation and cosmology, Advances in Theoretical and Mathematical Physics, 16 (2012), 1145-1196.  doi: 10.4310/ATMP.2012.v16.n4.a2.  Google Scholar

[9]

C. G. Bohmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation, Journal of Nonlinear Mathematical Physics, 17 (2010), 503-516.  doi: 10.1142/S1402925110001100.  Google Scholar

[10]

E. Cartan and D. D. Kosambi, Observations sur le mémoire précédent, Mathematische Zeitschrift, 37 (1933), 619-622.  doi: 10.1007/BF01474603.  Google Scholar

[11]

G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[12]

Y. Chen and Z. B. Yin, The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria, Int. J. Bifurc. Chaos, 29 (2019), 1950062, 10 pp. doi: 10.1142/S0218127419500627.  Google Scholar

[13]

S.-S. Chern, Sur la geometrie d'un systeme d'equations differentielles du second ordre, Bulletin des Sciences Mathematiques, 63 (1939), 206-212.   Google Scholar

[14]

A. Cima and J. Llibre, Bounded polynomial vector fields, Trans. Am. Math. Soc., 318 (1990), 557-579.  doi: 10.1090/S0002-9947-1990-0998352-5.  Google Scholar

[15]

B. Danila, T. Harko, M. K. Mak, P. Pantaragphong and S. V. Sabau, Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background, Advances in High Energy Physics, (2016), Article ID 7521464 26 pp. Google Scholar

[16]

C. Feng, Q. Huang and Y. Liu, Jacobi analysis for an unusual 3D autonomous system, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050062, 20 pp. doi: 10.1142/S0219887820500620.  Google Scholar

[17]

M. K. Gupta and C. K. Yadav, KCC theory and its application in a tumor growth model, Mathematical Methods in the Applied Sciences., 40 (2017), 7470-7487.  doi: 10.1002/mma.4542.  Google Scholar

[18]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of Rössler system, Int. J. Bifurc. Chaos, 27 (2017), 63-76.  doi: 10.1142/S0218127417500560.  Google Scholar

[19]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of modified Chua circuit system, International Journal of Geometric Methods in Modern Physics, 14 (2017), 121-142.  doi: 10.1142/S021988781750089X.  Google Scholar

[20]

M. K. Gupta and C. K. Yadav, Jacobi stability analysis of Rikitake system, International Journal of Geometric Methods in Modern Physics, 13 (2016), 1650098. doi: 10.1142/S0219887816500985.  Google Scholar

[21]

M. K. Gupta and C. K. Yadav, Rabinovich-Fabrikant system in view point of KCC theory in Finsler geometry, Journal of Interdisciplinary Mathematics, 22 (2019), 219-241.  doi: 10.1080/09720502.2019.1614249.  Google Scholar

[22]

T. Harko and V. S. Sabau, Jacobi stability of the vacuum in the static spherically symmetric brane world models, Physical Review D, 77 (2008), 104009. doi: 10.1103/PhysRevD.77.104009.  Google Scholar

[23]

T. Harko, C. Y. Ho, C. S. Leung and S. Yip, Jacobi stability analysis of the Lorenz system, International Journal of Geometric Methods in Modern Physics, 12 (2015), 1550081. doi: 10.1142/S0219887815500814.  Google Scholar

[24]

Q. Huang, A. Liu and Y. Liu, Jacobi stability analysis of the Chen system, Int. J. Bifurc. Chaos, 29 (2019), 1950139. doi: 10.1142/S0218127419501396.  Google Scholar

[25]

D. D. Kosambi, Parallelism and path-space, Mathematische Zeitschrift, 37 (1933), 608-618.  doi: 10.1007/BF01474602.  Google Scholar

[26]

M. Kumar, T. N. Mishra and B. Tiwari, Stability analysis of Navier-Stokes system, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950157. doi: 10.1142/S0219887819501573.  Google Scholar

[27]

G. A. Leonov, Lyapunov functions in the global analysis of chaotic systems, Ukrainian Mathematical Journal, 70 (2018), 42-66.  doi: 10.1007/s11253-018-1487-y.  Google Scholar

[28]

C.-L. Li and Y.-B. Zhao, A unified Lorenz-like system and its tracking control, Communications in Theoretical Physics, 63 (2015), 317-324.  doi: 10.1088/0253-6102/63/3/317.  Google Scholar

[29]

X. LiaoG. ZhouQ. YangY. Fu and G. Chen, Constructive proof of Lagrange stability and sufficient-Necessary conditions of Lyapunov stability for Yang-Chen chaotic system, Appl. Math. Comput., 309 (2017), 205-221.  doi: 10.1016/j.amc.2017.03.033.  Google Scholar

[30]

Y. Liu and Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal. Real World Appl., 11 (2010), 2563-2572.  doi: 10.1016/j.nonrwa.2009.09.001.  Google Scholar

[31]

Y. LiuS. Pang and D. Chen, An unusual chaotic system and its control, Mathematical and Computer Modelling, 57 (2013), 2473-2493.  doi: 10.1016/j.mcm.2012.12.006.  Google Scholar

[32]

Y. Liu and Q. Yang, Dynamics of the Lü system on the invariant algebraic surface and at infinity, Int. J. Bifurc. Chaos, 21 (2011), 2559-2582.  doi: 10.1142/S0218127411029938.  Google Scholar

[33]

Y. Liu, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system, Nonlinear Anal. Real World Appl., 13 (2012), 2466-2475.  doi: 10.1016/j.nonrwa.2012.02.011.  Google Scholar

[34]

Y. Liu, Analysis of global dynamics in an unusual 3D chaotic system, Nonlinear Dyn., 70 (2012), 2203-2212.  doi: 10.1007/s11071-012-0610-0.  Google Scholar

[35]

J. Llibre and M. Messias, Global dynamics of the Rikitake system, Physica D, 238 (2009), 241-252.  doi: 10.1016/j.physd.2008.10.011.  Google Scholar

[36]

J. Llibre, M. Messias and P. R. da Silva, On the global dynamics of the Rabinovich system, J. Phys. A, Math. Theor., 41 (2008), 275210. doi: 10.1088/1751-8113/41/27/275210.  Google Scholar

[37]

E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[38]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[39]

Q. LuoX. Liao and Z. Zeng, Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application, Science China Information Sciences, 53 (2010), 1574-1583.  doi: 10.1007/s11432-010-4032-7.  Google Scholar

[40]

M. Messias, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system, J. Phys. A, Math. Theor., 42 (2009), 115101. doi: 10.1088/1751-8113/42/11/115101.  Google Scholar

[41]

M. Messias, Dynamics at infinity of a cubic Chua's system, Int. J. Bifurc. Chaos, 21 (2011), 333-340.  doi: 10.1142/S0218127411028453.  Google Scholar

[42]

S. Oiwa and T. Yajima, Jacobi stability analysis and chaotic behavior of nonlinear double pendulum, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750176. doi: 10.1142/S0219887817501766.  Google Scholar

[43]

O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 57 (1976), 397-398.  doi: 10.1016/0375-9601(76)90101-8.  Google Scholar

[44]

V. S. Sabau, Systems biology and deviation curvature tensor, Nonlinear Anal. RWA, 6 (2005), 563-587.  doi: 10.1016/j.nonrwa.2004.12.012.  Google Scholar

[45]

G. van der Schrier and L. R. Maas, The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map, Physica D, 141 (2000), 19-36.  doi: 10.1016/S0167-2789(00)00033-6.  Google Scholar

[46]

A. Vanevcek and S. Celikovský, Control Systems: From linear analysis to synthesis of chaos, Prentice Hall International (UK) Ltd., (1996), 238-257.   Google Scholar

[47]

T. Yajima and K. Yamasaki, Jacobi stability for dynamical systems of two-dimensional second-order differential equations and application to overhead crane system, International Journal of Geometric Methods in Modern Physics, 13 (2016), 1650045. doi: 10.1142/S0219887816500456.  Google Scholar

[48]

K. Yamasaki and T. Yajima, Lotka–Volterra system and KCC theory: Differential geometric structure of competitions and predations, Nonlinear Analysis: Real World Applications, 14 (2013), 1845-1853.  doi: 10.1016/j.nonrwa.2012.11.015.  Google Scholar

[49]

K. Yamasaki and T. Yajima, Differential geometric structure of non-equilibrium dynamics in competition and predation: Finsler geometry and KCC theory, Journal of Dynamical Systems and Geomatric Theories, 14 (2016), 137-153.  doi: 10.1080/1726037X.2016.1250500.  Google Scholar

[50]

K. Yamasaki and T. Yajima, KCC analysis of the normal form of typical bifurcations in one-dimensional dynamical systems: Geometrical invariants of saddle-node, transcritical, and pitchfork bifurcations, Int. J. Bifurc. Chaos, 27 (2017), 1750145. doi: 10.1142/S0218127417501450.  Google Scholar

[51]

Q. YangG. Chen and T. Zhou, A unified Lorenz-type system and its canonical form, Int. J. Bifurc. Chaos, 16 (2006), 2855-2871.  doi: 10.1142/S0218127406016501.  Google Scholar

[52]

Q. Yang and G. Chen, A chaotic system with one saddle and two stable node-foci, Int. J. Bifurc. Chaos, 18 (2008), 1393-1414.  doi: 10.1142/S0218127408021063.  Google Scholar

[53]

Q. Yang and Y. Liu, A hyperchaotic system from a chaotic system with one saddle and two stable node-foci, Journal of Mathematical Analysis and Applications, 360 (2009), 293-306.  doi: 10.1016/j.jmaa.2009.06.051.  Google Scholar

[54]

Z. Zhang, T. Ding, W. Huang et al., Qualitative Theory of Differential Equations, Science Press, Beijing, in Chinese (1985). Google Scholar

Figure 1.  Attractors of Yang-Chen system with (a) $ a = 10 $, $ b = 8/3 $, and $ c = 16 $; (b) $ a = 35 $, $ b = 3 $, and $ c = 35 $
Figure 2.  Dynamics of the Yang-Chen system near the sphere at infinity in the local charts $ U_1 $ for (blue) $ (a, b, c) = (0.5, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, -0.03) $, (red) $ (a, b, c) = (1, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, -0.03) $, (black) $ (a, b, c) = (0.1, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, -0.01) $, respectively
Figure 3.  Dynamics of the Yang-Chen system near the sphere at infinity in the local charts $ V_1 $ (blue) $ (a, b, c) = (0.5, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, 0.03) $, (red) $ (a, b, c) = (1, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, 0.03) $, (black) $ (a, b, c) = (0.1, 1.01, 1) $ with initial conditions $ (z_1(0), z_2(0), z_(0)) = (0.03, 0.03, 0.01) $, respectively
Figure 4.  Phase portrait of the system (10), which corresponds to the phase portrait of the Yang-Chen system at infinity in the local charts $ U_2 $
Figure 5.  Phase portrait of the system (12), which corresponds to the phase portrait of the Yang-Chen system at infinity in the local charts $ U_3 $
Figure 6.  Phase portrait of system (1) at infinity
Figure 7.  Time variation of the deviation vector and its curvature near $ E_{1} $, for $ a = 35 $, $ b = 3 $
Figure 8.  Time variation of instability exponent $ \delta(E_{1}) $ for $ a = 35 $, $ b = 3 $, and different values of $ c $
Figure 9.  Time variation of the deviation vector and its curvature near $ E_{2, 3} $ with $ a = 35, b = 3 $. Initial conditions used to integrate deviation equations are $ \xi_{1}(0) = \xi_{2}(0) = 0 $, $ \dot{\xi}_{1}(0) = \dot{\xi}_{2}(0) = 10^{-6} $
Figure 10.  Time variation of curvature $ \kappa_{0} $ of deviation vector near equilibrium points $ E_{1} $ with $ a = 35, b = 3 $
Figure 11.  Time variation of curvature $ \kappa_{0} $ of deviation vector near equilibrium points $ E_{2, 3} $ with $ a = 35, b = 3 $
Figure 12.  A large version of Fig. 11 at time $ 0.25 $ to $ 0.55 $
[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[20]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]