doi: 10.3934/dcdsb.2020236

Qualitative properties and bifurcations of a leaf-eating herbivores model

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China

*Corresponding author: matzhjy@sina.com

Received  February 2020 Revised  May 2020 Published  August 2020

Fund Project: The paper was partially supported by the Characteristic innovation projects of colleges and universities in Guangdong Province (2019KTSCX088), the National Natural Science Foundation of China (11771197) and the Key Subject Program of Lingnan Normal University (1171518004)

In this paper, we discuss the dynamics of a discrete-time leaf-eating herbivores model. First of all, to investigate the bifurcations of the model, we study the qualitative properties of a fixed point, including hyperbolic and non-hyperbolic. Secondly, applying the center manifold theorem, we give the conditions that the model produces a supercritical flip bifurcation and a subcritical flip bifurcation respectively, from which we find a generalized flip bifurcation point. And then, we prove rigorously that the model undergoes a generalized flip bifurcation and give three parameter regions that the model possesses two period-two cycles, one period-two cycles and none respectively. Next, computing the normal form, we prove that the model undergoes a subcritical Neimark-Sacker bifurcation and produces a unique unstable invariant circle near the fixed point. Finally, by numerical simulations, we not only verify our results but also show a saddle period-five cycle and a saddle period-six cycle on the invariant circle.

Citation: Jiyu Zhong. Qualitative properties and bifurcations of a leaf-eating herbivores model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020236
References:
[1]

L. J. S. AllenM. K. Hannigan and M. J. Strauss, Mathematical analysis of a model for a plant-herbivore system, Bull. Math. Biol., 55 (1993), 847-864.   Google Scholar

[2]

J. Carr, Application of Center Manifold Theory, , Springer, New York, 1981.  Google Scholar

[3]

V. Castellanos and F. Sánchez-Garduño, The existence of a limit cycle in a pollinator-plant-herbivore mathematical model, Nonlinear Anal. Real World Appl., 48 (2019), 212-231.  doi: 10.1016/j.nonrwa.2019.01.011.  Google Scholar

[4]

F. M. DannanS. N. Elaydi and V. Ponomarenko, Stability of hyperbolic and nonhyperbolic fixed points of one-dimensional maps, J. Difference Equ. Appl., 9 (2003), 449-457.  doi: 10.1080/1023619031000078315.  Google Scholar

[5]

L. Edelstein-Keshet, Mathematical Models in Biology, Society for industrial and Applied Mathematics, Philadelphia, 2005. doi: 10.1137/1.9780898719147.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, 3$^rd$ edition, Springer, New York, 2005.  Google Scholar

[7]

M. Erb and P. Reymond, Molecular interactions between plants and insect herbivores, Annu. Rev. Plant Biol., 70 (2019), 527-557.  doi: 10.1146/annurev-arplant-050718-095910.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. HuangS. LiuS. Ruan and D. Xiao, Bifurcations in a discrete predator-prey model with nonmonotonic functional response, J. Math. Anal. Appl., 464 (2018), 201-230.  doi: 10.1016/j.jmaa.2018.03.074.  Google Scholar

[10]

R. R Kariyat and S. L. Portman, Plant-herbivore interactions: Thinking beyond larval growth and mortality, Am. J. Bot., 103 (2016), 789-791.  doi: 10.3732/ajb.1600066.  Google Scholar

[11]

A. Q. Khan and M. N. Qureshi, Stability analysis of a discrete biological model, Int. J. Biomath., 9 (2016), 1650021, 19 pp. doi: 10.1142/S1793524516500212.  Google Scholar

[12]

A. Q. KhanJ. Ma and D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185-198.  doi: 10.1016/j.cnsns.2016.02.037.  Google Scholar

[13]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^nd$ edition, Springer, New York, 1998.  Google Scholar

[14]

Y. LiZ. FengR. SwihartJ. Bryant and N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Differ. Equ., 18 (2006), 1021-1042.  doi: 10.1007/s10884-006-9029-y.  Google Scholar

[15]

L. LiJ. Zhen and L. Jing, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Appl. Math. Model., 40 (2016), 4765-4777.  doi: 10.1016/j.apm.2015.12.003.  Google Scholar

[16]

S. Li and W. Zhang, Bifurcations of a discrete prey-predator model with Holling type Ⅱ functional response, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 159-176.  doi: 10.3934/dcdsb.2010.14.159.  Google Scholar

[17]

X. Liu and D. Xiao, Bifurcations in a discrete time Lotka-Volterra predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 559-572.  doi: 10.3934/dcdsb.2006.6.559.  Google Scholar

[18]

R. LiuZ. FengH. Zhu and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 245 (2008), 442-467.  doi: 10.1016/j.jde.2007.10.034.  Google Scholar

[19]

E. Lorenz, Computational chaos - a prelude to computational instability, Physica D, 35 (1989), 299-317.  doi: 10.1016/0167-2789(89)90072-9.  Google Scholar

[20]

J. L. Maron, A. A. Agrawal and D. W. Schemske, Plant-herbivore coevolution and plant speciation, Ecology, 100 (2019), e02704 (33pages). doi: 10.1002/ecy.2704.  Google Scholar

[21]

R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.  doi: 10.1126/science.186.4164.645.  Google Scholar

[22]

G.-Q. SunA. ChakrabortyQ.-X. LiuZ. JinK. E. Anderson and B.-L. Li, Influence of time delay and nonlinear diffusion on herbivore outbreak, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1507-1518.  doi: 10.1016/j.cnsns.2013.09.016.  Google Scholar

[23]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003.  Google Scholar

[24]

J. Zhang and J. Zhong, Qualitative structures of a degenerate fixed point of a Ricker competition model, J. Difference Equ. Appl., 25 (2019), 430-454.  doi: 10.1080/10236198.2019.1581181.  Google Scholar

[25]

Y. ZhaoZ. FengY. Zheng and X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 258 (2015), 2847-2872.  doi: 10.1016/j.jde.2014.12.029.  Google Scholar

[26]

J. Zhong and J. Zhang, The stability of a degenerate fixed point for Guzowska-Luis-Elaydi Model, J. Differenc Equ. Appl., 24 (2018), 409-424.  doi: 10.1080/10236198.2017.1411909.  Google Scholar

show all references

References:
[1]

L. J. S. AllenM. K. Hannigan and M. J. Strauss, Mathematical analysis of a model for a plant-herbivore system, Bull. Math. Biol., 55 (1993), 847-864.   Google Scholar

[2]

J. Carr, Application of Center Manifold Theory, , Springer, New York, 1981.  Google Scholar

[3]

V. Castellanos and F. Sánchez-Garduño, The existence of a limit cycle in a pollinator-plant-herbivore mathematical model, Nonlinear Anal. Real World Appl., 48 (2019), 212-231.  doi: 10.1016/j.nonrwa.2019.01.011.  Google Scholar

[4]

F. M. DannanS. N. Elaydi and V. Ponomarenko, Stability of hyperbolic and nonhyperbolic fixed points of one-dimensional maps, J. Difference Equ. Appl., 9 (2003), 449-457.  doi: 10.1080/1023619031000078315.  Google Scholar

[5]

L. Edelstein-Keshet, Mathematical Models in Biology, Society for industrial and Applied Mathematics, Philadelphia, 2005. doi: 10.1137/1.9780898719147.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, 3$^rd$ edition, Springer, New York, 2005.  Google Scholar

[7]

M. Erb and P. Reymond, Molecular interactions between plants and insect herbivores, Annu. Rev. Plant Biol., 70 (2019), 527-557.  doi: 10.1146/annurev-arplant-050718-095910.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. HuangS. LiuS. Ruan and D. Xiao, Bifurcations in a discrete predator-prey model with nonmonotonic functional response, J. Math. Anal. Appl., 464 (2018), 201-230.  doi: 10.1016/j.jmaa.2018.03.074.  Google Scholar

[10]

R. R Kariyat and S. L. Portman, Plant-herbivore interactions: Thinking beyond larval growth and mortality, Am. J. Bot., 103 (2016), 789-791.  doi: 10.3732/ajb.1600066.  Google Scholar

[11]

A. Q. Khan and M. N. Qureshi, Stability analysis of a discrete biological model, Int. J. Biomath., 9 (2016), 1650021, 19 pp. doi: 10.1142/S1793524516500212.  Google Scholar

[12]

A. Q. KhanJ. Ma and D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185-198.  doi: 10.1016/j.cnsns.2016.02.037.  Google Scholar

[13]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^nd$ edition, Springer, New York, 1998.  Google Scholar

[14]

Y. LiZ. FengR. SwihartJ. Bryant and N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Differ. Equ., 18 (2006), 1021-1042.  doi: 10.1007/s10884-006-9029-y.  Google Scholar

[15]

L. LiJ. Zhen and L. Jing, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Appl. Math. Model., 40 (2016), 4765-4777.  doi: 10.1016/j.apm.2015.12.003.  Google Scholar

[16]

S. Li and W. Zhang, Bifurcations of a discrete prey-predator model with Holling type Ⅱ functional response, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 159-176.  doi: 10.3934/dcdsb.2010.14.159.  Google Scholar

[17]

X. Liu and D. Xiao, Bifurcations in a discrete time Lotka-Volterra predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 559-572.  doi: 10.3934/dcdsb.2006.6.559.  Google Scholar

[18]

R. LiuZ. FengH. Zhu and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 245 (2008), 442-467.  doi: 10.1016/j.jde.2007.10.034.  Google Scholar

[19]

E. Lorenz, Computational chaos - a prelude to computational instability, Physica D, 35 (1989), 299-317.  doi: 10.1016/0167-2789(89)90072-9.  Google Scholar

[20]

J. L. Maron, A. A. Agrawal and D. W. Schemske, Plant-herbivore coevolution and plant speciation, Ecology, 100 (2019), e02704 (33pages). doi: 10.1002/ecy.2704.  Google Scholar

[21]

R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.  doi: 10.1126/science.186.4164.645.  Google Scholar

[22]

G.-Q. SunA. ChakrabortyQ.-X. LiuZ. JinK. E. Anderson and B.-L. Li, Influence of time delay and nonlinear diffusion on herbivore outbreak, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1507-1518.  doi: 10.1016/j.cnsns.2013.09.016.  Google Scholar

[23]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003.  Google Scholar

[24]

J. Zhang and J. Zhong, Qualitative structures of a degenerate fixed point of a Ricker competition model, J. Difference Equ. Appl., 25 (2019), 430-454.  doi: 10.1080/10236198.2019.1581181.  Google Scholar

[25]

Y. ZhaoZ. FengY. Zheng and X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 258 (2015), 2847-2872.  doi: 10.1016/j.jde.2014.12.029.  Google Scholar

[26]

J. Zhong and J. Zhang, The stability of a degenerate fixed point for Guzowska-Luis-Elaydi Model, J. Differenc Equ. Appl., 24 (2018), 409-424.  doi: 10.1080/10236198.2017.1411909.  Google Scholar

Figure 1.  Diagram of bifurcation for system (2)
Figure 2.  Bifurcation diagram of system (2) near the point $ GF $
Figure 3.  Bifurcation diagram of system (31) for small $ |\beta| $
Figure 4.  Flip bifurcation route to chaos for $ k = 0.3 $
Figure 5.  An invariant circle $ \Gamma $ produced from the Neimark-Sacker bifurcation
Figure 6.  A saddle period-five cycle on the invariant circle $ \Gamma $
Figure 7.  A saddle period-six cycle on the invariant circle $ \Gamma $
Table 1.  Topological types of fixed point $ E $ in the hyperbolic case
Conditions $ E_1 $ Cases
$ 0<k<1 $ $ 0<b< 4k $ stable focus $ \mathfrak{D}_5 $
$ 4k\leq b<4/(2-k) $ stable node $ \mathfrak{D}_1 $
$ b>4/(2-k) $ saddle point $ \mathfrak{D}_2 $-I
$ k=1 $ $ b>4 $ saddle point $ \mathfrak{D}_2 $-II
$ 1<k<2 $ $ 0<b<4k $ unstable focus $ \mathfrak{D}_4 $-I
$ 4k\leq b<4/(2-k) $ unstable node $ \mathfrak{D}_3 $-I
$ b>4/(2-k) $ saddle point $ \mathfrak{D}_2 $-III
$ k\geq2 $ $ 0< b<4k $ unstable focus $ \mathfrak{D}_4 $-II
$ b\geq 2k $ unstable node $ \mathfrak{D}_3 $-II
Conditions $ E_1 $ Cases
$ 0<k<1 $ $ 0<b< 4k $ stable focus $ \mathfrak{D}_5 $
$ 4k\leq b<4/(2-k) $ stable node $ \mathfrak{D}_1 $
$ b>4/(2-k) $ saddle point $ \mathfrak{D}_2 $-I
$ k=1 $ $ b>4 $ saddle point $ \mathfrak{D}_2 $-II
$ 1<k<2 $ $ 0<b<4k $ unstable focus $ \mathfrak{D}_4 $-I
$ 4k\leq b<4/(2-k) $ unstable node $ \mathfrak{D}_3 $-I
$ b>4/(2-k) $ saddle point $ \mathfrak{D}_2 $-III
$ k\geq2 $ $ 0< b<4k $ unstable focus $ \mathfrak{D}_4 $-II
$ b\geq 2k $ unstable node $ \mathfrak{D}_3 $-II
[1]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[2]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[3]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[4]

Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023

[5]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[6]

Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213

[7]

Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437

[8]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[9]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[10]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[11]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[12]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[13]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[14]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[15]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[16]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[17]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[18]

Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407

[19]

Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553

[20]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (22)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]