doi: 10.3934/dcdsb.2020237

Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China

2. 

ICT School, The University of Suwon, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea

3. 

School of Mathematical Sciences, Qufu Normal University, Qufu, 273100, China

4. 

Department of Mathematics, Jiangxi University of Finance and Economics, Nanchang, 330032, China

*Corresponding author: Zunwei Fu

Received  March 2020 Revised  May 2020 Published  August 2020

Fund Project: This paper was partially supported by the National Natural Science Foundation of China (Grant No. 11801236), the Postdoctoral Science Foundation of China (Grant Nos. 2018M632593, 2019M660555), the Natural Science Foundation of Gansu Province for Young Scholars (Grant No. 18JR3RA102), the innovation capacity improvement project for colleges and universities of Gansu Province (Grant No. 2019A-011), the Natural Science Foundation of Jiangxi Province for Young Scholars (Grant No. 20181BAB211001), the Postdoctoral Science Foundation of Jiangxi Province (Grant No. 2017KY23) and Educational Commission Science Programm of Jiangxi Province (Grant No. GJJ190272)

The paper is concerned with the Navier-Stokes-Nernst-Planck-Poisson system arising from electrohydrodynamics in $ \mathbb{R}^d $. By means of the implicit function theorem, we prove the global existence of mild solutions for Cauchy problem of this system with small initial data in critical Besov-Morrey spaces. In comparison to the previous works, our existence result provides a new class of initial data, for which the problem is global solvability. Meanwhile, based on the so-called Gevrey estimates, we verify that the obtained mild solutions are analytic in the spatial variables. As a byproduct, we show the asymptotic stability of solutions as the time goes to infinity. Furthermore, decay estimates of higher-order derivatives of solutions are deduced in Morrey spaces.

Citation: Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020237
References:
[1]

D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778.  doi: 10.1215/S0012-7094-75-04265-9.  Google Scholar

[2]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963-991.  doi: 10.1007/s00205-012-0532-5.  Google Scholar

[3]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

M. Z. Bazant, K. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70 (2004), 021506. doi: 10.1103/PhysRevE.70.021506.  Google Scholar

[5]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes(French), Séminaire sur les équations aux Dérivées Partielles, 1993–1994.  Google Scholar

[6]

M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 75 (2012) 3754–3760. doi: 10.1016/j.na.2012.01.029.  Google Scholar

[7]

C. DengJ. Zhao and S. Cui, Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces, Nonlinear Anal., 73 (2010), 2088-2100.  doi: 10.1016/j.na.2010.05.037.  Google Scholar

[8]

C. DengJ. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices, J. Math. Anal. Appl., 377 (2011), 392-405.  doi: 10.1016/j.jmaa.2010.11.011.  Google Scholar

[9]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[10]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[11]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, arXiv: 1310.2141. Google Scholar

[12]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321-1337.  doi: 10.1016/j.jfa.2014.05.022.  Google Scholar

[13]

J. W. Joseph, Analytical approaches to charge transport in a moving medium, Transport Theory Statist. Phys., 31 (2002), 333-366.  doi: 10.1081/TT-120015505.  Google Scholar

[14]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.  Google Scholar

[15]

T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat.(N.S.), 22 (1992), 127–155. doi: 10.1007/BF01232939.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 250 (2011), 3859-3873.  doi: 10.1016/j.jde.2011.01.003.  Google Scholar

[18]

H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations, 19 (1994), 959-1014.  doi: 10.1080/03605309408821042.  Google Scholar

[19]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304. doi: 10.1002/cpa.20361.  Google Scholar

[20] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b19556.  Google Scholar
[21]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[22]

Q. Liu and S. Cui, Regularizing rate estimates for mild solutions of the incompressible magneto-hydrodynamic system, Commun. Pure Appl. Anal., 11 (2012), 1643–1660. doi: 10.3934/cpaa.2012.11.1643.  Google Scholar

[23]

Q. LiuJ. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, Ann. Mat. Pura Appl., 191 (2012), 293-309.  doi: 10.1007/s10231-010-0184-8.  Google Scholar

[24]

F. Li, Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics, J. Differential Equations, 246 (2009), 3620-3641.  doi: 10.1016/j.jde.2009.01.027.  Google Scholar

[25]

A. L. Mazzucato, Besov-Morrey spaces function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1364.  doi: 10.1090/S0002-9947-02-03214-2.  Google Scholar

[26]

J. Newman and K. Thomas-Alyea, Electrochemical Systems(3rd Edition), J. Wiley, Hoboken, 2004. Google Scholar

[27]

M. Oliver and E. S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in $\mathbb{R}^n$, J. Funct. Anal., 172 (2000), 1-18.  doi: 10.1006/jfan.1999.3550.  Google Scholar

[28]

R. J. Ryham, An energetic variational approach to mathematical modeling of charged fluids: Charge phases, simulation and well posedness (Doctoral dissertation), The Pennsylvania State University, 2006, 83pp.  Google Scholar

[29]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1014.  doi: 10.1142/S0218202509003693.  Google Scholar

[30]

J. Sun, M. Yang and S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), no. 4, 1203–1229. doi: 10.1007/s10231-016-0613-4.  Google Scholar

[31]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407–1456. doi: 10.1080/03605309208820892.  Google Scholar

[32]

M. Yang, Z. Fu and J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 60 (2017), 1837-1856. doi: 10.1007/s11425-016-0490-y.  Google Scholar

[33]

M. Yang and J. Sun, Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces, Commun. Pure Appl. Anal., 16 (2017), 1617-1639.  doi: 10.3934/cpaa.2017078.  Google Scholar

[34]

M. YangZ. Fu and J. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equations, 266 (2019), 5867-5894.  doi: 10.1016/j.jde.2018.10.050.  Google Scholar

[35]

J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys., 51 (2010), 093101. doi: 10.1063/1.3484184.  Google Scholar

[36]

J. ZhaoC. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differential Equations Appl., 3 (2011), 427-448.  doi: 10.7153/dea-03-27.  Google Scholar

[37]

J. ZhaoQ. Liu and S. Cui, Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye-Hückel system, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 1-18.  doi: 10.1007/s00030-011-0115-4.  Google Scholar

show all references

References:
[1]

D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778.  doi: 10.1215/S0012-7094-75-04265-9.  Google Scholar

[2]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963-991.  doi: 10.1007/s00205-012-0532-5.  Google Scholar

[3]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

M. Z. Bazant, K. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70 (2004), 021506. doi: 10.1103/PhysRevE.70.021506.  Google Scholar

[5]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes(French), Séminaire sur les équations aux Dérivées Partielles, 1993–1994.  Google Scholar

[6]

M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 75 (2012) 3754–3760. doi: 10.1016/j.na.2012.01.029.  Google Scholar

[7]

C. DengJ. Zhao and S. Cui, Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces, Nonlinear Anal., 73 (2010), 2088-2100.  doi: 10.1016/j.na.2010.05.037.  Google Scholar

[8]

C. DengJ. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices, J. Math. Anal. Appl., 377 (2011), 392-405.  doi: 10.1016/j.jmaa.2010.11.011.  Google Scholar

[9]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369. doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[10]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[11]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, arXiv: 1310.2141. Google Scholar

[12]

T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321-1337.  doi: 10.1016/j.jfa.2014.05.022.  Google Scholar

[13]

J. W. Joseph, Analytical approaches to charge transport in a moving medium, Transport Theory Statist. Phys., 31 (2002), 333-366.  doi: 10.1081/TT-120015505.  Google Scholar

[14]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.  Google Scholar

[15]

T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat.(N.S.), 22 (1992), 127–155. doi: 10.1007/BF01232939.  Google Scholar

[16]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.  Google Scholar

[17]

P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 250 (2011), 3859-3873.  doi: 10.1016/j.jde.2011.01.003.  Google Scholar

[18]

H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations, 19 (1994), 959-1014.  doi: 10.1080/03605309408821042.  Google Scholar

[19]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304. doi: 10.1002/cpa.20361.  Google Scholar

[20] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b19556.  Google Scholar
[21]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[22]

Q. Liu and S. Cui, Regularizing rate estimates for mild solutions of the incompressible magneto-hydrodynamic system, Commun. Pure Appl. Anal., 11 (2012), 1643–1660. doi: 10.3934/cpaa.2012.11.1643.  Google Scholar

[23]

Q. LiuJ. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, Ann. Mat. Pura Appl., 191 (2012), 293-309.  doi: 10.1007/s10231-010-0184-8.  Google Scholar

[24]

F. Li, Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics, J. Differential Equations, 246 (2009), 3620-3641.  doi: 10.1016/j.jde.2009.01.027.  Google Scholar

[25]

A. L. Mazzucato, Besov-Morrey spaces function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1364.  doi: 10.1090/S0002-9947-02-03214-2.  Google Scholar

[26]

J. Newman and K. Thomas-Alyea, Electrochemical Systems(3rd Edition), J. Wiley, Hoboken, 2004. Google Scholar

[27]

M. Oliver and E. S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in $\mathbb{R}^n$, J. Funct. Anal., 172 (2000), 1-18.  doi: 10.1006/jfan.1999.3550.  Google Scholar

[28]

R. J. Ryham, An energetic variational approach to mathematical modeling of charged fluids: Charge phases, simulation and well posedness (Doctoral dissertation), The Pennsylvania State University, 2006, 83pp.  Google Scholar

[29]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1014.  doi: 10.1142/S0218202509003693.  Google Scholar

[30]

J. Sun, M. Yang and S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), no. 4, 1203–1229. doi: 10.1007/s10231-016-0613-4.  Google Scholar

[31]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407–1456. doi: 10.1080/03605309208820892.  Google Scholar

[32]

M. Yang, Z. Fu and J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 60 (2017), 1837-1856. doi: 10.1007/s11425-016-0490-y.  Google Scholar

[33]

M. Yang and J. Sun, Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces, Commun. Pure Appl. Anal., 16 (2017), 1617-1639.  doi: 10.3934/cpaa.2017078.  Google Scholar

[34]

M. YangZ. Fu and J. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equations, 266 (2019), 5867-5894.  doi: 10.1016/j.jde.2018.10.050.  Google Scholar

[35]

J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys., 51 (2010), 093101. doi: 10.1063/1.3484184.  Google Scholar

[36]

J. ZhaoC. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differential Equations Appl., 3 (2011), 427-448.  doi: 10.7153/dea-03-27.  Google Scholar

[37]

J. ZhaoQ. Liu and S. Cui, Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye-Hückel system, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 1-18.  doi: 10.1007/s00030-011-0115-4.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[16]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[19]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[20]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (148)
  • Cited by (0)

Other articles
by authors

[Back to Top]