\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays

This research was supported by the National Natural Science Foundation of China (No. 11671406)
Abstract Full Text(HTML) Figure(1) / Table(1) Related Papers Cited by
  • This article is concerned with a generalized almost periodic predator-prey model with impulsive effects and time delays. By utilizing comparison theorem and constructing a feasible Lyapunov functional, we obtain sufficient conditions to guarantee the permanence and global asymptotic stability of the system. By applying Arzelà-Ascoli theorem, we establish the existence and uniqueness of almost-periodic positive solutions. A feasible numerical simulation is provided to explain the suitability of our main criteria.

    Mathematics Subject Classification: Primary: 34K14, 34K20, 34K45; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Numeric simulation of the prey $ x(t) $ and the predator $ y(t) $ of (42) with the initial conditions $ (x(0),y(0))^{T} = (0.6,0.3)^{T} $, $ (x(0),y(0))^{T} = (0.2,0.1)^{T} $ and $ (x(0),y(0))^{T} = (0.4,0.2)^{T} $

    Table 1.  The biological parameters of $ x $ and $ y $

    $a_{i}^{l}$ $a_{i}^{u}$ $b_{i}^{l}$ $b_{i}^{u}$ $c_{i}^{l}$ $c_{i}^{u}$ $m_{i}^{l}$ $M_{i}^{u}$ $P_{i}^{l}$ $\tau_{i}^{l}$ $\tau_{i}^{u}$
    $x$ $0.25$ $0.35$ $0.94$ $0.96$ $0.11$ $0.11$ $0.2495$ $0.3736$ $0.01$ $0.01$ $0.01$
    $y$ $0.45$ $0.55$ $1.20$ $3.80$ $3.00$ $3.00$ $0.0189$ $0.5451$ $0.02$ $0.02$ $0.02$
     | Show Table
    DownLoad: CSV
  • [1] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, 28. World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812831804.
    [2] D. D. Bainov and  P. S. SimeonovSystems with Impulsive Effect: Stability, Theory and Applications, Halsted Press, New York, 1998. 
    [3] I. Barbalat, System dequations differentielles doscillations nonlinears, Rev. Roumaine Math. Pures Appl., 4 (1959), 267-270. 
    [4] S. Bochner, Abstrakte fastperiodische funktionen, Acta Math., 61 (1933), 149–184, in German. doi: 10.1007/BF02547790.
    [5] S. Bochner, Beiträge zur theorie der fastperiodischen funktionen, Ⅰ. Funktionen einer Variablen, Math. Ann., 96 (1927), 119–147, in German. doi: 10.1007/BF01209156.
    [6] H. Bohr, Zur theorie der fastperiodischen funktionen: Ⅰ. Eine verallgemeinerung der theorie der fourierreihen, Acta Math. 45 (1925), 29–127, in German. doi: 10.1007/BF02395468.
    [7] H. Bohr, Zur theorie der fastperiodischen funktionen. Ⅱ, Acta Math. 46 (1925), 101–214, in German. doi: 10.1007/BF02543859.
    [8] H. Bohr, Zur theorie der fastperiodischen funktionen. Ⅲ, Acta Math., 47 (1926), 237–281, in German. doi: 10.1007/BF02543846.
    [9] T. Diagana and H. Zhou, Existence of positive almost periodic solutions to the hematopoiesis model, Appl. Math. Comput., 274 (2016), 644-648.  doi: 10.1016/j.amc.2015.10.029.
    [10] H.-S. DingQ.-L. Liu and J. J. Nieto, Existence of positive almost periodic solutions to a class of hematopoiesis model, Appl. Math. Model., 40 (2016), 3289-3297.  doi: 10.1016/j.apm.2015.10.020.
    [11] H.-S. DingG. M. N'Guérékata and J. J. Nieto, Weighted pseudo almost periodic solutions to a class of discrete hematopoiesis model, Rev. Mat. Complut., 26 (2013), 427-443.  doi: 10.1007/s13163-012-0114-y.
    [12] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes on Mathematics, vol. 377, Springer-Verlag, Berlin-New York, 1974.
    [13] J. GaoQ. Wang and Y. Lin, Existence and exponential stability of almost-periodic solutions for neutral BAM neural networks with time-varying delays in leakage terms on time scales, Math. Methods Appl. Sci., 39 (2016), 1361-1375.  doi: 10.1002/mma.3574.
    [14] J. GaoQ.-R. Wang and L.-W. Zhang, Existence and stability of almost-periodic solutions for cellular neural networks with time-varying delays in leakage terms on time scales, Appl. Math. Comput., 237 (2014), 639-649.  doi: 10.1016/j.amc.2014.03.051.
    [15] C. Y. HeAlmost Periodic Differential Equations, Higher Education Press, Beijing, 1992. 
    [16] K. Hong and P. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.
    [17] T. HuZ. HeX. Zhang and S. Zhong, Finite-time stability for fractional-order complex-valued neural networks with time delay, Appl. Math. Comput., 365 (2020), 548-556.  doi: 10.1016/j.amc.2019.124715.
    [18] T. HuX. Zhang and S. Zhong, Global asymptotic synchronization of nonidentical fractional-order neural networks, Neurocomputing, 313 (2018), 39-46.  doi: 10.1016/j.neucom.2018.05.098.
    [19] F. Kong and J. J. Nieto, Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5803-5830. 
    [20] F. Kong, Q. Zhu, K. Wang and J. J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and D operator, J. Franklin Inst., 356 (2019), 11605-11637. doi: 10.1016/j.jfranklin.2019.09.030.
    [21] N. A. Kudryashov and A. S. Zakharchenko, Analytical properties and exact solutions of the Lotka-Volterra competition system, Appl. Math. Comput., 254 (2015), 219-228.  doi: 10.1016/j.amc.2014.12.113.
    [22] X. Lin and F. Chen, Almost periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response, Appl. Math. Comput., 214 (2009), 548-556.  doi: 10.1016/j.amc.2009.04.028.
    [23] X. LinZ. Du and Y. Lv, Global asymptotic stability of almost periodic solution for a multispecies competition-predator system with time delays, Appl. Math. Comput., 219 (2013), 4908-4923.  doi: 10.1016/j.amc.2012.10.083.
    [24] B. Lisena, Global stability of a periodic Holling-Tanner predator-prey model, Math. Methods Appl. Sci., 41 (2018), 3270-3281.  doi: 10.1002/mma.4814.
    [25] B. Liu, New results on the positive almost periodic solutions for a model of hematopoiesis, Nonlinear Anal. Real World Appl., 17 (2014), 252-264.  doi: 10.1016/j.nonrwa.2013.12.003.
    [26] Z. MaF. ChenC. Wu and W. Chen, Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219 (2013), 7945-7953.  doi: 10.1016/j.amc.2013.02.033.
    [27] X. MengW. Xu and L. Chen, Profitless delays for a nonautonomous Lotka-Volterra predator-prey almost periodic system with dispersion, Appl. Math. Comput., 188 (2007), 365-378.  doi: 10.1016/j.amc.2006.09.133.
    [28] V. D. Mil'man and A. D. Myshkis, On the stability of motion in the presence of impulses, Siberian Math. Ž., 1 (1960), 233-237. 
    [29] L. NieZ. TengL. Hu and J. Peng, Qualitative analysis of a modified Leslie-Gowerand Holling-type Ⅱ predator-prey model with state dependent impulsive effects, Nonlinear Anal. Real World Appl., 11 (2010), 1364-1373.  doi: 10.1016/j.nonrwa.2009.02.026.
    [30] J. Qiu and J. Cao, Exponential stability of a competitive Lotka-Volterra system with delays, Appl. Math. Comput., 201 (2008), 819-829.  doi: 10.1016/j.amc.2007.11.046.
    [31] A. M. Samoilenko and N. A. Perestyuk, Differential Equations with Impulse Effect, World Scientific, Singapore, 1995.
    [32] Y. ShanK. SheS. ZhongQ. ZhongK. Shi and C. Zhao, Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays, Appl. Math. Comput., 333 (2018), 145-168.  doi: 10.1016/j.amc.2018.03.101.
    [33] C. Shen, Permanence and global attractivity of the food-chain system with Holling Ⅳ type functional response, Appl. Math. Comput., 194 (2007), 179-185.  doi: 10.1016/j.amc.2007.04.019.
    [34] E. R. van Kampen, Almost periodic functions and compact groups, Ann. of Math., 37 (1936), 78-91.  doi: 10.2307/1968688.
    [35] J. von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc., 36 (1934), 445-492.  doi: 10.1090/S0002-9947-1934-1501752-3.
    [36] K. Wang and Y. Zhu, Global attractivity of positive periodic solution for a Volterra model, Appl. Math. Comput., 203 (2008), 493-501.  doi: 10.1016/j.amc.2008.04.005.
    [37] L. Wang, Dynamic analysis on an almost periodic predator-prey model with impulses effects, Engineering Letters, 26 (2018), 333-339. 
    [38] X. Yu and Q. Wang, Weighted pseudo-almost periodic solutions for Shunting inhibitory cellular neural networks on time scales, Bull. Malays. Math. Sci. Soc., 42 (2019), 2055-2074.  doi: 10.1007/s40840-017-0595-4.
    [39] X. Yu, Q. Wang and Y. Bai, Permanence and almost periodic solutions for $N$-species nonautonomous Lotka-Volterra competitive systems with delays and impulsive perturbations on time scales, Complexity, 2018 (2018), Article ID 2658745, 12 pp. doi: 10.1155/2018/2658745.
    [40] H. ZhangY. LiB. Jing and W. Zhao, Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects, Appl. Math. Comput., 232 (2014), 1138-1150.  doi: 10.1016/j.amc.2014.01.131.
    [41] H. Zhang and J. Shao, Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms, Appl. Math. Comput., 219 (2013), 11471-11482.  doi: 10.1016/j.amc.2013.05.046.
    [42] H. ZhangM. Yang and L. Wang, Existence and exponential convergence of the positive almost periodic solution for a model of hematopoiesis, Appl. Math. Lett., 26 (2013), 38-42.  doi: 10.1016/j.aml.2012.02.034.
    [43] H. Zhou, W. Wang and Z. Zhou, Positive almost periodic solution for a model of hematopoiesis with infinite time delays and a nonlinear harvesting term, Abstr. Appl. Anal., 2013 (2013), Article ID 146729, 6 pp. doi: 10.1155/2013/146729.
    [44] H. Zhou and L. Yang, A new result on the existence of positive almost periodic solution for generalized hematopoiesis model, J. Math. Anal. Appl., 462 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.01.075.
    [45] X. ZhouX. Shi and X. Song, Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, Appl. Math. Comput., 196 (2008), 129-136.  doi: 10.1016/j.amc.2007.05.041.
    [46] Z.-Q. Zhu and Q.-R. Wang, Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl., 335 (2007), 751-762.  doi: 10.1016/j.jmaa.2007.02.008.
    [47] L. ZuD. JiangD. O'ReganT. Hayat and B. Ahmad, Ergodic property of a Lotka-Volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93-102.  doi: 10.1016/j.amc.2018.02.035.
  • 加载中

Figures(1)

Tables(1)

SHARE

Article Metrics

HTML views(524) PDF downloads(350) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return