-
Previous Article
Moran process and Wright-Fisher process favor low variability
- DCDS-B Home
- This Issue
- Next Article
Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency
1. | College of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China |
2. | Department of Mathematics, Southeast University, Nanjing 211189, China |
$ u_{tt}-u_{xx} +mu +\varepsilon f(\omega t,x,u;\xi) = 0 $ |
$ \varepsilon $ |
$ \omega = \xi \bar{\omega}, $ |
$ \bar{\omega} $ |
References:
[1] |
A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. |
[2] |
A. Avila,
Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.
doi: 10.1007/s11511-015-0128-7. |
[3] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[4] |
M. Bambusi and S. Graffi,
Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.
doi: 10.1007/s002200100426. |
[5] |
M. Berti and L. Biasco,
Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.
doi: 10.1007/s00220-011-1264-3. |
[6] |
M. Berti and P. Bolle,
Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.
doi: 10.4171/JEMS/361. |
[7] |
J. Bourgain,
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.
doi: 10.1155/S1073792894000516. |
[8] |
J. Bourgain,
Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.
doi: 10.1007/BF01902055. |
[9] |
J. Bourgain,
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.
doi: 10.2307/121001. |
[10] |
J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999.
doi: 10.1090/coll/046. |
[11] |
J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.
doi: 10.1515/9781400837144.![]() ![]() ![]() |
[12] |
J. Bourgain,
On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.
doi: 10.4310/MRL.1997.v4.n4.a1. |
[13] |
W. Craig and C. Wayne,
Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.
doi: 10.1002/cpa.3160461102. |
[14] |
L. Eliasson,
Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.
|
[15] |
J. Geng and Y. Yi,
Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.
doi: 10.1016/j.jde.2006.07.027. |
[16] |
J. Geng and J. You,
A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.
doi: 10.1016/j.jde.2004.09.013. |
[17] |
J. Geng and X. Ren,
Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.
doi: 10.1016/j.jde.2010.04.003. |
[18] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[19] |
T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993.
doi: 10.1007/978-3-662-08054-2. |
[20] |
S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993.
doi: 10.1007/BFb0092243. |
[21] |
S. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[22] |
R. Krikorian, J. Wang, J. You and Q. Zhou,
Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.
doi: 10.1007/s00220-017-3021-8. |
[23] |
Z. Liang and J. You,
Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.
doi: 10.1137/S0036141003435011. |
[24] |
J. Liu and X. Yuan,
A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[25] |
H. Niu and J. Geng,
Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.
doi: 10.1088/0951-7715/20/11/003. |
[26] |
J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148. |
[27] |
J. Pöschel,
Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[28] |
Y. Shi, J. Xu and X. Xu,
On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.
doi: 10.1016/j.na.2014.04.007. |
[29] |
C. E. Wayne,
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
doi: 10.1007/BF02104499. |
[30] |
X. Yuan,
Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.
doi: 10.1016/j.jde.2005.12.012. |
[31] |
M. Zhang and J. Si,
Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.
doi: 10.1016/j.physd.2009.09.003. |
[32] |
X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. |
show all references
References:
[1] |
A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. |
[2] |
A. Avila,
Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.
doi: 10.1007/s11511-015-0128-7. |
[3] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[4] |
M. Bambusi and S. Graffi,
Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.
doi: 10.1007/s002200100426. |
[5] |
M. Berti and L. Biasco,
Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.
doi: 10.1007/s00220-011-1264-3. |
[6] |
M. Berti and P. Bolle,
Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.
doi: 10.4171/JEMS/361. |
[7] |
J. Bourgain,
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.
doi: 10.1155/S1073792894000516. |
[8] |
J. Bourgain,
Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.
doi: 10.1007/BF01902055. |
[9] |
J. Bourgain,
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.
doi: 10.2307/121001. |
[10] |
J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999.
doi: 10.1090/coll/046. |
[11] |
J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.
doi: 10.1515/9781400837144.![]() ![]() ![]() |
[12] |
J. Bourgain,
On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.
doi: 10.4310/MRL.1997.v4.n4.a1. |
[13] |
W. Craig and C. Wayne,
Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.
doi: 10.1002/cpa.3160461102. |
[14] |
L. Eliasson,
Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.
|
[15] |
J. Geng and Y. Yi,
Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.
doi: 10.1016/j.jde.2006.07.027. |
[16] |
J. Geng and J. You,
A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.
doi: 10.1016/j.jde.2004.09.013. |
[17] |
J. Geng and X. Ren,
Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.
doi: 10.1016/j.jde.2010.04.003. |
[18] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[19] |
T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993.
doi: 10.1007/978-3-662-08054-2. |
[20] |
S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993.
doi: 10.1007/BFb0092243. |
[21] |
S. Kuksin and J. Pöschel,
Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656. |
[22] |
R. Krikorian, J. Wang, J. You and Q. Zhou,
Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.
doi: 10.1007/s00220-017-3021-8. |
[23] |
Z. Liang and J. You,
Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.
doi: 10.1137/S0036141003435011. |
[24] |
J. Liu and X. Yuan,
A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3. |
[25] |
H. Niu and J. Geng,
Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.
doi: 10.1088/0951-7715/20/11/003. |
[26] |
J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148. |
[27] |
J. Pöschel,
Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.
doi: 10.1007/BF02566420. |
[28] |
Y. Shi, J. Xu and X. Xu,
On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.
doi: 10.1016/j.na.2014.04.007. |
[29] |
C. E. Wayne,
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
doi: 10.1007/BF02104499. |
[30] |
X. Yuan,
Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.
doi: 10.1016/j.jde.2005.12.012. |
[31] |
M. Zhang and J. Si,
Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.
doi: 10.1016/j.physd.2009.09.003. |
[32] |
X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. |
[1] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
[2] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[3] |
Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101 |
[4] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[5] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4531-4543. doi: 10.3934/dcds.2021047 |
[6] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[7] |
Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287 |
[8] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[9] |
Pietro Baldi. Quasi-periodic solutions of the equation $v_{t t} - v_{x x} +v^3 = f(v)$. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 883-903. doi: 10.3934/dcds.2006.15.883 |
[10] |
Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268 |
[11] |
Dongfeng Zhang, Junxiang Xu. On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1417-1445. doi: 10.3934/cpaa.2022024 |
[12] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[13] |
Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure and Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421 |
[14] |
Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 |
[15] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[16] |
Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379 |
[17] |
Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019 |
[18] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
[19] |
Sijia Zhang, Shengfan Zhou. Random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022056 |
[20] |
Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]