doi: 10.3934/dcdsb.2020241

Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency

1. 

College of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China

2. 

Department of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author: Yanling Shi

Received  April 2019 Published  August 2020

Fund Project: The first author is partially supported by NSFC Grant(11801492, 61877052), NSFJS Grant (BK 20170472). The second author is supported by the NSFC Grant(11871146)

In this paper, one dimensional nonlinear wave equation
$ u_{tt}-u_{xx} +mu +\varepsilon f(\omega t,x,u;\xi) = 0 $
with Dirichlet boundary condition is considered, where
$ \varepsilon $
is small positive parameter,
$ \omega = \xi \bar{\omega}, $
$ \bar{\omega} $
is weak Liouvillean frequency. It is proved that there are many quasi-periodic solutions with Liouvillean frequency for the above equation. The proof is based on an infinite dimensional KAM Theorem.
Citation: Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020241
References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

show all references

References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

[1]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[2]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[3]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[4]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[5]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[6]

Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287

[7]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[8]

Pietro Baldi. Quasi-periodic solutions of the equation $v_{t t} - v_{x x} +v^3 = f(v)$. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 883-903. doi: 10.3934/dcds.2006.15.883

[9]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[10]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020216

[11]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[12]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[13]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[14]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[15]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[16]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[17]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[18]

Dongfeng Zhang, Junxiang Xu, Xindong Xu. Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2851-2877. doi: 10.3934/dcds.2018123

[19]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[20]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (15)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]