doi: 10.3934/dcdsb.2020241

Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency

1. 

College of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China

2. 

Department of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author: Yanling Shi

Received  April 2019 Published  August 2020

Fund Project: The first author is partially supported by NSFC Grant(11801492, 61877052), NSFJS Grant (BK 20170472). The second author is supported by the NSFC Grant(11871146)

In this paper, one dimensional nonlinear wave equation
$ u_{tt}-u_{xx} +mu +\varepsilon f(\omega t,x,u;\xi) = 0 $
with Dirichlet boundary condition is considered, where
$ \varepsilon $
is small positive parameter,
$ \omega = \xi \bar{\omega}, $
$ \bar{\omega} $
is weak Liouvillean frequency. It is proved that there are many quasi-periodic solutions with Liouvillean frequency for the above equation. The proof is based on an infinite dimensional KAM Theorem.
Citation: Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020241
References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

show all references

References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[3]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[4]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[6]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[9]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[12]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[13]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[17]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[18]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]