doi: 10.3934/dcdsb.2020243

Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations

School of Mathematics and Statistics, Shandong University, Weihai 264209, China

* Corresponding author: Bing Xie

Received  November 2019 Published  August 2020

Fund Project: The first author is supported by the NSF of China grants 11771253, 11971262 and 61977043. The second author is supported by NSF of the Shandong Province grants ZR2019MA038, ZR2019MA050 and ZR2017MA049

The present paper is concerned with the extremal problem of the $ L^1 $-norm of the weights for non-left-definite eigenvalue problems of vibrating string equations with separated boundary conditions. Applying the critical equations of the weights, the infimum is obtained in terms of the given eigenvalue and the parameter in boundary conditions.

Citation: Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020243
References:
[1]

G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.  doi: 10.2307/2372093.  Google Scholar

[2]

J. B. Conway, A Course in Functional Analysis, Springer, New York, 1990.  Google Scholar

[3]

N. Dunford and J. T. Schwartz, Linear Operators, Part Ⅰ, Interscience Publishers, New York, 1988.  Google Scholar

[4]

Yu. V. Egorov and V. A. Kondrat'ev, Estimates for the First Eigenvalue in some Sturm-Liouville Problems, Russian Math. Surveys, 51 (1996), 439-508. doi: 10.1070/RM1996v051n03ABEH002911.  Google Scholar

[5]

H. Guo and J. Qi, Extremal norm of potentials for Sturm-Liouville eigenvalue problems with separated boundary conditions, Electron. J. Differential Equations, 99 (2017), 1-11.   Google Scholar

[6]

H. Guo and J. Qi, Sturm-Liouville problems involving distribution weights and an application to optimal problems, J. Optim. Theory Appl., 184 (2019), 842-857.  doi: 10.1007/s10957-019-01584-x.  Google Scholar

[7]

D. Hinton and M. Mccarthy, Bounds and optimization of the minimum eigenvalue for a vibrating system, Electron. J. Qual. Theory Differ. Equ., 48 (2013), 1-22.  doi: 10.14232/ejqtde.2013.1.48.  Google Scholar

[8]

Y. S. Ilyasov and N. F. Valeeva, On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem, J. Differential Equations, 266 (2019), 4533-4543.  doi: 10.1016/j.jde.2018.10.003.  Google Scholar

[9]

Y. S. Ilyasov and N. F. Valeeva, On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems, Ufa Math. J., 10 (2018), 122-128.  doi: 10.13108/2018-10-4-122.  Google Scholar

[10]

S. Karaa, Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal., 29 (1998), 1279-1300.  doi: 10.1137/S0036141096307849.  Google Scholar

[11]

M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187.  doi: 10.1090/trans2/001/08.  Google Scholar

[12]

R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, Vol. 183 doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[13]

J. P. Pinasco, Lyapunov-type Inequalities with Application to Eigenvalue Problems, Spinger Briefs in Mathematics, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[14] J. Pöschel and E. Trubowitz, The Inverse Spectral Theory, Academic Press, New York, 1987.   Google Scholar
[15]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse Dirichlet problems, Inverse Problems, 32 (2016), 1-13.  doi: 10.1088/0266-5611/32/3/035007.  Google Scholar

[16]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in $L^1$ balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008.  Google Scholar

[17]

Z. Wen and M. Zhang, On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures, Discrete Contin. Dyn. Syst. B, 25 (2020), 3257-3274.  doi: 10.3934/dcdsb.2020061.  Google Scholar

[18]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016.  Google Scholar

[19]

M. ZhangZ. WenG. MengJ. Qi and B. Xie, On the number and complete continuity of weighted eigenvalues of measure differential equations, Differential Integral Equations, 31 (2018), 761-784.   Google Scholar

show all references

References:
[1]

G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.  doi: 10.2307/2372093.  Google Scholar

[2]

J. B. Conway, A Course in Functional Analysis, Springer, New York, 1990.  Google Scholar

[3]

N. Dunford and J. T. Schwartz, Linear Operators, Part Ⅰ, Interscience Publishers, New York, 1988.  Google Scholar

[4]

Yu. V. Egorov and V. A. Kondrat'ev, Estimates for the First Eigenvalue in some Sturm-Liouville Problems, Russian Math. Surveys, 51 (1996), 439-508. doi: 10.1070/RM1996v051n03ABEH002911.  Google Scholar

[5]

H. Guo and J. Qi, Extremal norm of potentials for Sturm-Liouville eigenvalue problems with separated boundary conditions, Electron. J. Differential Equations, 99 (2017), 1-11.   Google Scholar

[6]

H. Guo and J. Qi, Sturm-Liouville problems involving distribution weights and an application to optimal problems, J. Optim. Theory Appl., 184 (2019), 842-857.  doi: 10.1007/s10957-019-01584-x.  Google Scholar

[7]

D. Hinton and M. Mccarthy, Bounds and optimization of the minimum eigenvalue for a vibrating system, Electron. J. Qual. Theory Differ. Equ., 48 (2013), 1-22.  doi: 10.14232/ejqtde.2013.1.48.  Google Scholar

[8]

Y. S. Ilyasov and N. F. Valeeva, On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem, J. Differential Equations, 266 (2019), 4533-4543.  doi: 10.1016/j.jde.2018.10.003.  Google Scholar

[9]

Y. S. Ilyasov and N. F. Valeeva, On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems, Ufa Math. J., 10 (2018), 122-128.  doi: 10.13108/2018-10-4-122.  Google Scholar

[10]

S. Karaa, Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal., 29 (1998), 1279-1300.  doi: 10.1137/S0036141096307849.  Google Scholar

[11]

M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187.  doi: 10.1090/trans2/001/08.  Google Scholar

[12]

R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, Vol. 183 doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[13]

J. P. Pinasco, Lyapunov-type Inequalities with Application to Eigenvalue Problems, Spinger Briefs in Mathematics, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[14] J. Pöschel and E. Trubowitz, The Inverse Spectral Theory, Academic Press, New York, 1987.   Google Scholar
[15]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse Dirichlet problems, Inverse Problems, 32 (2016), 1-13.  doi: 10.1088/0266-5611/32/3/035007.  Google Scholar

[16]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in $L^1$ balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008.  Google Scholar

[17]

Z. Wen and M. Zhang, On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures, Discrete Contin. Dyn. Syst. B, 25 (2020), 3257-3274.  doi: 10.3934/dcdsb.2020061.  Google Scholar

[18]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016.  Google Scholar

[19]

M. ZhangZ. WenG. MengJ. Qi and B. Xie, On the number and complete continuity of weighted eigenvalues of measure differential equations, Differential Integral Equations, 31 (2018), 761-784.   Google Scholar

[1]

Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465

[2]

He Zhang, Xue Yang, Yong Li. Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1133-1148. doi: 10.3934/dcdss.2017061

[3]

Alexander Khapalov. Controllability properties of a vibrating string with variable axial load. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 311-324. doi: 10.3934/dcds.2004.11.311

[4]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[5]

Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114

[6]

Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256

[7]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[8]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[9]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[10]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[11]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[12]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[13]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[14]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[15]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure & Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

[16]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[17]

Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079

[18]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[19]

Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123

[20]

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (17)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]