doi: 10.3934/dcdsb.2020243

Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations

School of Mathematics and Statistics, Shandong University, Weihai 264209, China

* Corresponding author: Bing Xie

Received  November 2019 Published  August 2020

Fund Project: The first author is supported by the NSF of China grants 11771253, 11971262 and 61977043. The second author is supported by NSF of the Shandong Province grants ZR2019MA038, ZR2019MA050 and ZR2017MA049

The present paper is concerned with the extremal problem of the $ L^1 $-norm of the weights for non-left-definite eigenvalue problems of vibrating string equations with separated boundary conditions. Applying the critical equations of the weights, the infimum is obtained in terms of the given eigenvalue and the parameter in boundary conditions.

Citation: Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020243
References:
[1]

G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.  doi: 10.2307/2372093.  Google Scholar

[2]

J. B. Conway, A Course in Functional Analysis, Springer, New York, 1990.  Google Scholar

[3]

N. Dunford and J. T. Schwartz, Linear Operators, Part Ⅰ, Interscience Publishers, New York, 1988.  Google Scholar

[4]

Yu. V. Egorov and V. A. Kondrat'ev, Estimates for the First Eigenvalue in some Sturm-Liouville Problems, Russian Math. Surveys, 51 (1996), 439-508. doi: 10.1070/RM1996v051n03ABEH002911.  Google Scholar

[5]

H. Guo and J. Qi, Extremal norm of potentials for Sturm-Liouville eigenvalue problems with separated boundary conditions, Electron. J. Differential Equations, 99 (2017), 1-11.   Google Scholar

[6]

H. Guo and J. Qi, Sturm-Liouville problems involving distribution weights and an application to optimal problems, J. Optim. Theory Appl., 184 (2019), 842-857.  doi: 10.1007/s10957-019-01584-x.  Google Scholar

[7]

D. Hinton and M. Mccarthy, Bounds and optimization of the minimum eigenvalue for a vibrating system, Electron. J. Qual. Theory Differ. Equ., 48 (2013), 1-22.  doi: 10.14232/ejqtde.2013.1.48.  Google Scholar

[8]

Y. S. Ilyasov and N. F. Valeeva, On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem, J. Differential Equations, 266 (2019), 4533-4543.  doi: 10.1016/j.jde.2018.10.003.  Google Scholar

[9]

Y. S. Ilyasov and N. F. Valeeva, On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems, Ufa Math. J., 10 (2018), 122-128.  doi: 10.13108/2018-10-4-122.  Google Scholar

[10]

S. Karaa, Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal., 29 (1998), 1279-1300.  doi: 10.1137/S0036141096307849.  Google Scholar

[11]

M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187.  doi: 10.1090/trans2/001/08.  Google Scholar

[12]

R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, Vol. 183 doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[13]

J. P. Pinasco, Lyapunov-type Inequalities with Application to Eigenvalue Problems, Spinger Briefs in Mathematics, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[14] J. Pöschel and E. Trubowitz, The Inverse Spectral Theory, Academic Press, New York, 1987.   Google Scholar
[15]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse Dirichlet problems, Inverse Problems, 32 (2016), 1-13.  doi: 10.1088/0266-5611/32/3/035007.  Google Scholar

[16]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in $L^1$ balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008.  Google Scholar

[17]

Z. Wen and M. Zhang, On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures, Discrete Contin. Dyn. Syst. B, 25 (2020), 3257-3274.  doi: 10.3934/dcdsb.2020061.  Google Scholar

[18]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016.  Google Scholar

[19]

M. ZhangZ. WenG. MengJ. Qi and B. Xie, On the number and complete continuity of weighted eigenvalues of measure differential equations, Differential Integral Equations, 31 (2018), 761-784.   Google Scholar

show all references

References:
[1]

G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.  doi: 10.2307/2372093.  Google Scholar

[2]

J. B. Conway, A Course in Functional Analysis, Springer, New York, 1990.  Google Scholar

[3]

N. Dunford and J. T. Schwartz, Linear Operators, Part Ⅰ, Interscience Publishers, New York, 1988.  Google Scholar

[4]

Yu. V. Egorov and V. A. Kondrat'ev, Estimates for the First Eigenvalue in some Sturm-Liouville Problems, Russian Math. Surveys, 51 (1996), 439-508. doi: 10.1070/RM1996v051n03ABEH002911.  Google Scholar

[5]

H. Guo and J. Qi, Extremal norm of potentials for Sturm-Liouville eigenvalue problems with separated boundary conditions, Electron. J. Differential Equations, 99 (2017), 1-11.   Google Scholar

[6]

H. Guo and J. Qi, Sturm-Liouville problems involving distribution weights and an application to optimal problems, J. Optim. Theory Appl., 184 (2019), 842-857.  doi: 10.1007/s10957-019-01584-x.  Google Scholar

[7]

D. Hinton and M. Mccarthy, Bounds and optimization of the minimum eigenvalue for a vibrating system, Electron. J. Qual. Theory Differ. Equ., 48 (2013), 1-22.  doi: 10.14232/ejqtde.2013.1.48.  Google Scholar

[8]

Y. S. Ilyasov and N. F. Valeeva, On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem, J. Differential Equations, 266 (2019), 4533-4543.  doi: 10.1016/j.jde.2018.10.003.  Google Scholar

[9]

Y. S. Ilyasov and N. F. Valeeva, On an inverse spectral problem and a generalized Sturm's nodal theorem for nonlinear boundary value problems, Ufa Math. J., 10 (2018), 122-128.  doi: 10.13108/2018-10-4-122.  Google Scholar

[10]

S. Karaa, Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal., 29 (1998), 1279-1300.  doi: 10.1137/S0036141096307849.  Google Scholar

[11]

M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187.  doi: 10.1090/trans2/001/08.  Google Scholar

[12]

R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, Vol. 183 doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[13]

J. P. Pinasco, Lyapunov-type Inequalities with Application to Eigenvalue Problems, Spinger Briefs in Mathematics, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[14] J. Pöschel and E. Trubowitz, The Inverse Spectral Theory, Academic Press, New York, 1987.   Google Scholar
[15]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse Dirichlet problems, Inverse Problems, 32 (2016), 1-13.  doi: 10.1088/0266-5611/32/3/035007.  Google Scholar

[16]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in $L^1$ balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008.  Google Scholar

[17]

Z. Wen and M. Zhang, On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures, Discrete Contin. Dyn. Syst. B, 25 (2020), 3257-3274.  doi: 10.3934/dcdsb.2020061.  Google Scholar

[18]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016.  Google Scholar

[19]

M. ZhangZ. WenG. MengJ. Qi and B. Xie, On the number and complete continuity of weighted eigenvalues of measure differential equations, Differential Integral Equations, 31 (2018), 761-784.   Google Scholar

[1]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[2]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[9]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[10]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[11]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[12]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[15]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[16]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[18]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[19]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[20]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (215)
  • Cited by (0)

Other articles
by authors

[Back to Top]