• Previous Article
    Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance
  • DCDS-B Home
  • This Issue
  • Next Article
    Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations
July  2021, 26(7): 3517-3542. doi: 10.3934/dcdsb.2020244

Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains

School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001 China

* Corresponding author: Fuzhi Li, lifuzhisru@163.com

Received  December 2019 Revised  June 2020 Published  July 2021 Early access  August 2020

This paper is devoted to bi-spatial random attractors of the stochastic Fitzhugh-Nagumo equations with additive noise on thin domains when the terminate space is the Sobolev space. We first established the existence of random attractor on regular space and then show that the upper semi-continuity of these attractors under the Sobolev norm when a family of $ (n+1) $-dimensional thin domains degenerates onto an $ n $-dimensional domain.

Citation: Fuzhi Li, Dongmei Xu. Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3517-3542. doi: 10.3934/dcdsb.2020244
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.

[2]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.  doi: 10.12775/TMNA.2001.035.

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.

[5]

J. M. ArrietaA. N. CarvalhoR. P. Silva and M. C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.

[6]

J. M. ArrietaA. Nogueira and M. C. Pereira, Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries, Comput. Math. Appl., 77 (2019), 536-554.  doi: 10.1016/j.camwa.2018.09.056.

[7]

J. M. Arrieta and M. Villanueva-Pesqueira, Elliptic and parabolic problems in thin domains with doubly oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891-1914.  doi: 10.3934/cpaa.2020083.

[8]

T. Q. Bao, Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains, Disrete Contin. Dyn. Syst., 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.

[9]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.

[10]

I. Chueshov, Monotone Random Systems Theory and Applications, 1779, Springer Science & Business Media, 2002. doi: 10.1007/b83277.

[11]

I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.  doi: 10.1007/s00205-007-0068-2.

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 38 (2018), 303-324.  doi: 10.1016/j.na.2015.08.009.

[13]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Phys. D, 374/375 (2018), 21-34.  doi: 10.1016/j.physd.2018.03.002.

[14]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb R^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.

[15]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.

[16]

A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.

[17]

J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219.  doi: 10.1090/S0002-9947-1992-1040261-1.

[18]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. 

[19]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.  doi: 10.1017/S0308210500028043.

[20]

P. E. KloedenJ. Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246 (2009), 4702-4730.  doi: 10.1016/j.jde.2008.11.017.

[21]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.

[22]

D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703. doi: 10.1063/1.5031770.

[23]

D. LiL. Shi and X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121-5148.  doi: 10.3934/dcdsb.2019046.

[24]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.

[25]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.

[26]

F. Li and Y. Li, Asymptotic behavior of stochastic $g$-Navier-Stokes equations on a sequence of expanding domains, J. Math. Phys., 60 (2019), 061505. doi: 10.1063/1.5083695.

[27]

F. LiY. Li and R. Wang, Limiting dynamics for stochastic reaction diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.  doi: 10.1016/j.camwa.2019.07.009.

[28]

F. LiY. Li and R. Wang, Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.  doi: 10.3934/dcds.2018158.

[29]

F. LiY. Li and R. Wang, Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.  doi: 10.12775/TMNA.2019.015.

[30]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.

[31]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.

[32]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.

[33]

Y. Li and F. Li, Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains, Stoch. Dyn., 19 (2019), 1950037. doi: 10.1142/S0219493719500370.

[34]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equation, J. Math. Anal. Appl., 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.

[35]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1535-1557.  doi: 10.3934/dcdsb.2018058.

[36]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.

[37]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.

[38]

I. Pažanin and M. C. Pereira, On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption, Commun. Pure Appl. Anal., 17 (2018), 579-592.  doi: 10.3934/cpaa.2018031.

[39]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems â…¡, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.  doi: 10.12775/TMNA.2002.010.

[40]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.  doi: 10.2307/2152776.

[41]

L. Shi, D. Li, X, Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn., 20 (2020), 2050018. doi: 10.1142/S0219493720500185.

[42]

L. ShiR. WangK Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.

[43]

M. Sui and Y. Wang, Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.  doi: 10.1016/j.amc.2014.05.045.

[44]

X. SongC. Sun and L. Yang, Pullback attractors for 2D Navier-Stokes equations on time-varying domains, Nonlinear Anal. Real World Appl., 45 (2019), 437-460.  doi: 10.1016/j.nonrwa.2018.07.013.

[45]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[46]

S. Wang and Y. Li, Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Phys. D, 382/383 (2018), 46-57.  doi: 10.1016/j.physd.2018.07.003.

[47]

X. WangK Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.  doi: 10.1137/140991819.

[48]

X. WangK Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[49]

X. WangK Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.

[50]

W. Zhao, $H^1$-random attractors for stochastic reaction-diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72.  doi: 10.1016/j.na.2013.01.014.

[51]

W. Zhao, Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises, Discrete Contin. Dyn. Syst. B, 24 (2019), 3453-3474.  doi: 10.3934/dcdsb.2018251.

[52]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.

[2]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.  doi: 10.12775/TMNA.2001.035.

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.

[5]

J. M. ArrietaA. N. CarvalhoR. P. Silva and M. C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.

[6]

J. M. ArrietaA. Nogueira and M. C. Pereira, Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries, Comput. Math. Appl., 77 (2019), 536-554.  doi: 10.1016/j.camwa.2018.09.056.

[7]

J. M. Arrieta and M. Villanueva-Pesqueira, Elliptic and parabolic problems in thin domains with doubly oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891-1914.  doi: 10.3934/cpaa.2020083.

[8]

T. Q. Bao, Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains, Disrete Contin. Dyn. Syst., 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.

[9]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.

[10]

I. Chueshov, Monotone Random Systems Theory and Applications, 1779, Springer Science & Business Media, 2002. doi: 10.1007/b83277.

[11]

I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.  doi: 10.1007/s00205-007-0068-2.

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 38 (2018), 303-324.  doi: 10.1016/j.na.2015.08.009.

[13]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Phys. D, 374/375 (2018), 21-34.  doi: 10.1016/j.physd.2018.03.002.

[14]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb R^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.

[15]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.

[16]

A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.

[17]

J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219.  doi: 10.1090/S0002-9947-1992-1040261-1.

[18]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95. 

[19]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.  doi: 10.1017/S0308210500028043.

[20]

P. E. KloedenJ. Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246 (2009), 4702-4730.  doi: 10.1016/j.jde.2008.11.017.

[21]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.

[22]

D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703. doi: 10.1063/1.5031770.

[23]

D. LiL. Shi and X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121-5148.  doi: 10.3934/dcdsb.2019046.

[24]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.

[25]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.

[26]

F. Li and Y. Li, Asymptotic behavior of stochastic $g$-Navier-Stokes equations on a sequence of expanding domains, J. Math. Phys., 60 (2019), 061505. doi: 10.1063/1.5083695.

[27]

F. LiY. Li and R. Wang, Limiting dynamics for stochastic reaction diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.  doi: 10.1016/j.camwa.2019.07.009.

[28]

F. LiY. Li and R. Wang, Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.  doi: 10.3934/dcds.2018158.

[29]

F. LiY. Li and R. Wang, Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.  doi: 10.12775/TMNA.2019.015.

[30]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.

[31]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.

[32]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.

[33]

Y. Li and F. Li, Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains, Stoch. Dyn., 19 (2019), 1950037. doi: 10.1142/S0219493719500370.

[34]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equation, J. Math. Anal. Appl., 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.

[35]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1535-1557.  doi: 10.3934/dcdsb.2018058.

[36]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.

[37]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.

[38]

I. Pažanin and M. C. Pereira, On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption, Commun. Pure Appl. Anal., 17 (2018), 579-592.  doi: 10.3934/cpaa.2018031.

[39]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems â…¡, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.  doi: 10.12775/TMNA.2002.010.

[40]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.  doi: 10.2307/2152776.

[41]

L. Shi, D. Li, X, Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn., 20 (2020), 2050018. doi: 10.1142/S0219493720500185.

[42]

L. ShiR. WangK Lu and B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.  doi: 10.1016/j.jde.2019.05.002.

[43]

M. Sui and Y. Wang, Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.  doi: 10.1016/j.amc.2014.05.045.

[44]

X. SongC. Sun and L. Yang, Pullback attractors for 2D Navier-Stokes equations on time-varying domains, Nonlinear Anal. Real World Appl., 45 (2019), 437-460.  doi: 10.1016/j.nonrwa.2018.07.013.

[45]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[46]

S. Wang and Y. Li, Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Phys. D, 382/383 (2018), 46-57.  doi: 10.1016/j.physd.2018.07.003.

[47]

X. WangK Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.  doi: 10.1137/140991819.

[48]

X. WangK Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[49]

X. WangK Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.

[50]

W. Zhao, $H^1$-random attractors for stochastic reaction-diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72.  doi: 10.1016/j.na.2013.01.014.

[51]

W. Zhao, Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises, Discrete Contin. Dyn. Syst. B, 24 (2019), 3453-3474.  doi: 10.3934/dcdsb.2018251.

[52]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.

[1]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[2]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[3]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[4]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[5]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[6]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[7]

Yangrong Li, Shuang Yang, Guangqing Long. Continuity of random attractors on a topological space and fractional delayed FitzHugh-Nagumo equations with WZ-noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021303

[8]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[9]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[10]

Dingshi Li, Xiaohu Wang, Junyilang Zhao. Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2751-2776. doi: 10.3934/cpaa.2020120

[11]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118

[12]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations and Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[13]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations and Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[14]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[15]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[16]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[17]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[18]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[19]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[20]

Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (184)
  • HTML views (294)
  • Cited by (0)

Other articles
by authors

[Back to Top]