-
Previous Article
The effect of caputo fractional difference operator on a novel game theory model
- DCDS-B Home
- This Issue
-
Next Article
Evaluating vaccination effectiveness of group-specific fractional-dose strategies
Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains
School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001 China |
This paper is devoted to bi-spatial random attractors of the stochastic Fitzhugh-Nagumo equations with additive noise on thin domains when the terminate space is the Sobolev space. We first established the existence of random attractor on regular space and then show that the upper semi-continuity of these attractors under the Sobolev norm when a family of $ (n+1) $-dimensional thin domains degenerates onto an $ n $-dimensional domain.
References:
[1] |
A. Adili and B. Wang,
Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.
doi: 10.3934/dcdsb.2013.18.643. |
[2] |
F. Antoci and M. Prizzi,
Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.
doi: 10.12775/TMNA.2001.035. |
[3] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[4] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[5] |
J. M. Arrieta, A. N. Carvalho, R. P. Silva and M. C. Pereira,
Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.
doi: 10.1016/j.na.2011.05.006. |
[6] |
J. M. Arrieta, A. Nogueira and M. C. Pereira,
Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries, Comput. Math. Appl., 77 (2019), 536-554.
doi: 10.1016/j.camwa.2018.09.056. |
[7] |
J. M. Arrieta and M. Villanueva-Pesqueira,
Elliptic and parabolic problems in thin domains with doubly oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891-1914.
doi: 10.3934/cpaa.2020083. |
[8] |
T. Q. Bao,
Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains, Disrete Contin. Dyn. Syst., 35 (2015), 441-466.
doi: 10.3934/dcds.2015.35.441. |
[9] |
D. Cao, C. Sun and M. Yang,
Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.
doi: 10.1016/j.jde.2015.02.020. |
[10] |
I. Chueshov, Monotone Random Systems Theory and Applications, 1779, Springer Science & Business Media, 2002.
doi: 10.1007/b83277. |
[11] |
I. Chueshov and S. Kuksin,
Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.
doi: 10.1007/s00205-007-0068-2. |
[12] |
H. Cui, Y. Li and J. Yin,
Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 38 (2018), 303-324.
doi: 10.1016/j.na.2015.08.009. |
[13] |
H. Cui, P. E. Kloeden and F. Wu,
Pathwise upper semi-continuity of random pullback attractors along the time axis, Phys. D, 374/375 (2018), 21-34.
doi: 10.1016/j.physd.2018.03.002. |
[14] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb R^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[15] |
A. Gu, K. Lu and B. Wang,
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
doi: 10.3934/dcds.2019008. |
[16] |
A. Gu and B. Wang,
Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072. |
[17] |
J. K. Hale and G. Raugel,
A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219.
doi: 10.1090/S0002-9947-1992-1040261-1. |
[18] |
J. K. Hale and G. Raugel,
Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.
|
[19] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[20] |
P. E. Kloeden, J. Real and C. Sun,
Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246 (2009), 4702-4730.
doi: 10.1016/j.jde.2008.11.017. |
[21] |
P. E. Kloeden and J. Simsen,
Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.
doi: 10.1016/j.jmaa.2014.12.069. |
[22] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703.
doi: 10.1063/1.5031770. |
[23] |
D. Li, L. Shi and X. Wang,
Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121-5148.
doi: 10.3934/dcdsb.2019046. |
[24] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[25] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[26] |
F. Li and Y. Li, Asymptotic behavior of stochastic $g$-Navier-Stokes equations on a sequence of expanding domains, J. Math. Phys., 60 (2019), 061505.
doi: 10.1063/1.5083695. |
[27] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[28] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[29] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/TMNA.2019.015. |
[30] |
Y. Li, H. Cui and J. Li,
Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.
doi: 10.1016/j.na.2014.06.013. |
[31] |
Y. Li, A. Gu and J. Li,
Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021. |
[32] |
Y. Li and B. Guo,
Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.
doi: 10.1016/j.jde.2008.06.031. |
[33] |
Y. Li and F. Li, Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains, Stoch. Dyn., 19 (2019), 1950037.
doi: 10.1142/S0219493719500370. |
[34] |
Y. Li, L. She and R. Wang,
Asymptotically autonomous dynamics for parabolic equation, J. Math. Anal. Appl., 459 (2018), 1106-1123.
doi: 10.1016/j.jmaa.2017.11.033. |
[35] |
Y. Li, L. She and J. Yin,
Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1535-1557.
doi: 10.3934/dcdsb.2018058. |
[36] |
Y. Li and J. Yin,
A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203. |
[37] |
K. Lu and B. Wang,
Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y. |
[38] |
I. Pažanin and M. C. Pereira,
On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption, Commun. Pure Appl. Anal., 17 (2018), 579-592.
doi: 10.3934/cpaa.2018031. |
[39] |
M. Prizzi and K. P. Rybakowski,
Recent results on thin domain problems â…¡, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.
doi: 10.12775/TMNA.2002.010. |
[40] |
G. Raugel and G. R. Sell,
Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.
doi: 10.2307/2152776. |
[41] |
L. Shi, D. Li, X, Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn., 20 (2020), 2050018.
doi: 10.1142/S0219493720500185. |
[42] |
L. Shi, R. Wang, K Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[43] |
M. Sui and Y. Wang,
Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.
doi: 10.1016/j.amc.2014.05.045. |
[44] |
X. Song, C. Sun and L. Yang,
Pullback attractors for 2D Navier-Stokes equations on time-varying domains, Nonlinear Anal. Real World Appl., 45 (2019), 437-460.
doi: 10.1016/j.nonrwa.2018.07.013. |
[45] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[46] |
S. Wang and Y. Li,
Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Phys. D, 382/383 (2018), 46-57.
doi: 10.1016/j.physd.2018.07.003. |
[47] |
X. Wang, K Lu and B. Wang,
Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[48] |
X. Wang, K Lu and B. Wang,
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.
doi: 10.1007/s10884-015-9448-8. |
[49] |
X. Wang, K Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[50] |
W. Zhao,
$H^1$-random attractors for stochastic reaction-diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72.
doi: 10.1016/j.na.2013.01.014. |
[51] |
W. Zhao,
Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises, Discrete Contin. Dyn. Syst. B, 24 (2019), 3453-3474.
doi: 10.3934/dcdsb.2018251. |
[52] |
W. Zhao,
Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.
doi: 10.1016/j.camwa.2018.02.031. |
show all references
References:
[1] |
A. Adili and B. Wang,
Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.
doi: 10.3934/dcdsb.2013.18.643. |
[2] |
F. Antoci and M. Prizzi,
Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.
doi: 10.12775/TMNA.2001.035. |
[3] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[4] |
J. M. Arrieta and A. N. Carvalho,
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations, 199 (2004), 143-178.
doi: 10.1016/j.jde.2003.09.004. |
[5] |
J. M. Arrieta, A. N. Carvalho, R. P. Silva and M. C. Pereira,
Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.
doi: 10.1016/j.na.2011.05.006. |
[6] |
J. M. Arrieta, A. Nogueira and M. C. Pereira,
Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries, Comput. Math. Appl., 77 (2019), 536-554.
doi: 10.1016/j.camwa.2018.09.056. |
[7] |
J. M. Arrieta and M. Villanueva-Pesqueira,
Elliptic and parabolic problems in thin domains with doubly oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891-1914.
doi: 10.3934/cpaa.2020083. |
[8] |
T. Q. Bao,
Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains, Disrete Contin. Dyn. Syst., 35 (2015), 441-466.
doi: 10.3934/dcds.2015.35.441. |
[9] |
D. Cao, C. Sun and M. Yang,
Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.
doi: 10.1016/j.jde.2015.02.020. |
[10] |
I. Chueshov, Monotone Random Systems Theory and Applications, 1779, Springer Science & Business Media, 2002.
doi: 10.1007/b83277. |
[11] |
I. Chueshov and S. Kuksin,
Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.
doi: 10.1007/s00205-007-0068-2. |
[12] |
H. Cui, Y. Li and J. Yin,
Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 38 (2018), 303-324.
doi: 10.1016/j.na.2015.08.009. |
[13] |
H. Cui, P. E. Kloeden and F. Wu,
Pathwise upper semi-continuity of random pullback attractors along the time axis, Phys. D, 374/375 (2018), 21-34.
doi: 10.1016/j.physd.2018.03.002. |
[14] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb R^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[15] |
A. Gu, K. Lu and B. Wang,
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
doi: 10.3934/dcds.2019008. |
[16] |
A. Gu and B. Wang,
Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072. |
[17] |
J. K. Hale and G. Raugel,
A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219.
doi: 10.1090/S0002-9947-1992-1040261-1. |
[18] |
J. K. Hale and G. Raugel,
Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.
|
[19] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[20] |
P. E. Kloeden, J. Real and C. Sun,
Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246 (2009), 4702-4730.
doi: 10.1016/j.jde.2008.11.017. |
[21] |
P. E. Kloeden and J. Simsen,
Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.
doi: 10.1016/j.jmaa.2014.12.069. |
[22] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703.
doi: 10.1063/1.5031770. |
[23] |
D. Li, L. Shi and X. Wang,
Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121-5148.
doi: 10.3934/dcdsb.2019046. |
[24] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[25] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[26] |
F. Li and Y. Li, Asymptotic behavior of stochastic $g$-Navier-Stokes equations on a sequence of expanding domains, J. Math. Phys., 60 (2019), 061505.
doi: 10.1063/1.5083695. |
[27] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[28] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[29] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/TMNA.2019.015. |
[30] |
Y. Li, H. Cui and J. Li,
Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.
doi: 10.1016/j.na.2014.06.013. |
[31] |
Y. Li, A. Gu and J. Li,
Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021. |
[32] |
Y. Li and B. Guo,
Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.
doi: 10.1016/j.jde.2008.06.031. |
[33] |
Y. Li and F. Li, Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains, Stoch. Dyn., 19 (2019), 1950037.
doi: 10.1142/S0219493719500370. |
[34] |
Y. Li, L. She and R. Wang,
Asymptotically autonomous dynamics for parabolic equation, J. Math. Anal. Appl., 459 (2018), 1106-1123.
doi: 10.1016/j.jmaa.2017.11.033. |
[35] |
Y. Li, L. She and J. Yin,
Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1535-1557.
doi: 10.3934/dcdsb.2018058. |
[36] |
Y. Li and J. Yin,
A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203. |
[37] |
K. Lu and B. Wang,
Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y. |
[38] |
I. Pažanin and M. C. Pereira,
On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption, Commun. Pure Appl. Anal., 17 (2018), 579-592.
doi: 10.3934/cpaa.2018031. |
[39] |
M. Prizzi and K. P. Rybakowski,
Recent results on thin domain problems â…¡, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.
doi: 10.12775/TMNA.2002.010. |
[40] |
G. Raugel and G. R. Sell,
Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.
doi: 10.2307/2152776. |
[41] |
L. Shi, D. Li, X, Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive noise on unbounded thin domains, Stoch. Dyn., 20 (2020), 2050018.
doi: 10.1142/S0219493720500185. |
[42] |
L. Shi, R. Wang, K Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[43] |
M. Sui and Y. Wang,
Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.
doi: 10.1016/j.amc.2014.05.045. |
[44] |
X. Song, C. Sun and L. Yang,
Pullback attractors for 2D Navier-Stokes equations on time-varying domains, Nonlinear Anal. Real World Appl., 45 (2019), 437-460.
doi: 10.1016/j.nonrwa.2018.07.013. |
[45] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[46] |
S. Wang and Y. Li,
Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Phys. D, 382/383 (2018), 46-57.
doi: 10.1016/j.physd.2018.07.003. |
[47] |
X. Wang, K Lu and B. Wang,
Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[48] |
X. Wang, K Lu and B. Wang,
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.
doi: 10.1007/s10884-015-9448-8. |
[49] |
X. Wang, K Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[50] |
W. Zhao,
$H^1$-random attractors for stochastic reaction-diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72.
doi: 10.1016/j.na.2013.01.014. |
[51] |
W. Zhao,
Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises, Discrete Contin. Dyn. Syst. B, 24 (2019), 3453-3474.
doi: 10.3934/dcdsb.2018251. |
[52] |
W. Zhao,
Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.
doi: 10.1016/j.camwa.2018.02.031. |
[1] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[2] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[3] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[4] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[5] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[6] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[7] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[8] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[9] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[10] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[11] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[12] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[13] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[16] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[17] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[20] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]