-
Previous Article
A comparative study of atomistic-based stress evaluation
- DCDS-B Home
- This Issue
-
Next Article
Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry
Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
The present paper concerns an initial boundary value problem of two-dimensional (2D) nonhomogeneous magnetohydrodynamic (MHD) equations with non-negative density. We establish the global existence and exponential decay of strong solutions. In particular, the initial data can be arbitrarily large. The key idea is to use a lemma due to Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).
References:
[1] |
H. Abidi and M. Paicu,
Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.
doi: 10.1017/S0308210506001181. |
[2] |
C. Amrouche and V. Girault,
Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44 (1994), 109-140.
|
[3] |
Q. Bie, Q. Wang and Z. Yao,
Global well-posedness of the 3D incompressible MHD equations with variable density, Nonlinear Anal. Real World Appl., 47 (2019), 85-105.
doi: 10.1016/j.nonrwa.2018.10.008. |
[4] |
F. Chen, B. Guo and X. Zhai,
Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Models, 12 (2019), 37-58.
doi: 10.3934/krm.2019002. |
[5] |
F. Chen, Y. Li and H. Xu,
Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.
doi: 10.3934/dcds.2016.36.2945. |
[6] |
Q. Chen, Z. Tan and Y. Wang,
Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.
doi: 10.1002/mma.1338. |
[7] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[8] |
R. Danchin and P. B. Mucha,
The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.
doi: 10.1002/cpa.21806. |
[9] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[10] |
L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[11] |
A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008. Google Scholar |
[12] |
X. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[13] |
H. Li,
Global strong solution to the three dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and resistivity, Math. Methods Appl. Sci., 41 (2018), 3062-3092.
doi: 10.1002/mma.4801. |
[14] |
J. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[15] |
Z. Liang,
Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.
doi: 10.1016/j.jde.2014.12.015. |
[16] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.
![]() |
[17] |
Y. Liu, Global existence and exponential decay of strong solutions for the 3D incompressible MHD equations with density-dependent viscosity coefficient, Z. Angew. Math. Phys., 70 (2019), Paper No. 107.
doi: 10.1007/s00033-019-1157-4. |
[18] |
B. Lü, X. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[19] |
B. Lü, Z. Xu and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.
doi: 10.1016/j.matpur.2016.10.009. |
[20] |
M. Paicu, P. Zhang and Z. Zhang,
Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.
doi: 10.1080/03605302.2013.780079. |
[21] |
X. Si and X. Ye, Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients, Z. Angew. Math. Phys., 67 (2016), Paper No. 126.
doi: 10.1007/s00033-016-0722-3. |
[22] |
S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), Paper No. 23.
doi: 10.1007/s00033-018-0915-z. |
[23] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4$^th$ edition, Springer-Verlag, Berlin, 2008. |
show all references
References:
[1] |
H. Abidi and M. Paicu,
Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.
doi: 10.1017/S0308210506001181. |
[2] |
C. Amrouche and V. Girault,
Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44 (1994), 109-140.
|
[3] |
Q. Bie, Q. Wang and Z. Yao,
Global well-posedness of the 3D incompressible MHD equations with variable density, Nonlinear Anal. Real World Appl., 47 (2019), 85-105.
doi: 10.1016/j.nonrwa.2018.10.008. |
[4] |
F. Chen, B. Guo and X. Zhai,
Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Models, 12 (2019), 37-58.
doi: 10.3934/krm.2019002. |
[5] |
F. Chen, Y. Li and H. Xu,
Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.
doi: 10.3934/dcds.2016.36.2945. |
[6] |
Q. Chen, Z. Tan and Y. Wang,
Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.
doi: 10.1002/mma.1338. |
[7] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[8] |
R. Danchin and P. B. Mucha,
The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.
doi: 10.1002/cpa.21806. |
[9] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[10] |
L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[11] |
A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008. Google Scholar |
[12] |
X. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[13] |
H. Li,
Global strong solution to the three dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and resistivity, Math. Methods Appl. Sci., 41 (2018), 3062-3092.
doi: 10.1002/mma.4801. |
[14] |
J. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[15] |
Z. Liang,
Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.
doi: 10.1016/j.jde.2014.12.015. |
[16] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.
![]() |
[17] |
Y. Liu, Global existence and exponential decay of strong solutions for the 3D incompressible MHD equations with density-dependent viscosity coefficient, Z. Angew. Math. Phys., 70 (2019), Paper No. 107.
doi: 10.1007/s00033-019-1157-4. |
[18] |
B. Lü, X. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[19] |
B. Lü, Z. Xu and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.
doi: 10.1016/j.matpur.2016.10.009. |
[20] |
M. Paicu, P. Zhang and Z. Zhang,
Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.
doi: 10.1080/03605302.2013.780079. |
[21] |
X. Si and X. Ye, Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients, Z. Angew. Math. Phys., 67 (2016), Paper No. 126.
doi: 10.1007/s00033-016-0722-3. |
[22] |
S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), Paper No. 23.
doi: 10.1007/s00033-018-0915-z. |
[23] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4$^th$ edition, Springer-Verlag, Berlin, 2008. |
[1] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[4] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[7] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[8] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[9] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[10] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[15] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
[16] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[17] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[18] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[19] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[20] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]