• Previous Article
    Numerical analysis and simulation of an adhesive contact problem with damage and long memory
  • DCDS-B Home
  • This Issue
  • Next Article
    A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations
doi: 10.3934/dcdsb.2020247

Analytical study of resonance regions for second kind commensurate fractional systems

Laboratoire d'Automatique et Informatique de Guelma (LAIG), 8 Mai 1945-University, BP 401, 24000 Guelma, Algeria

* Corresponding author: Sihem Kechida

Received  May 2019 Revised  May 2020 Published  August 2020

The aim of this paper is to determine analytically the resonance limits for second kind commensurate fractional systems in terms of the pseudo damping factor $ \xi $ and the commensurate order $ v $ and in addition specify the different resonance regions. In the literature, these limits and regions have never been discussed mathematically, they are determined numerically. Second kind commensurate fractional systems are resonant if the equation : $ \Omega^{3v}+3\xi cos(v \pi/2)\Omega^{2v}+(2\xi^{2}+cos(v\pi))\Omega{^v}+\xi cos(v\pi/2) = 0 $, obtained by setting the first derivative of the amplitude-frequency response equal to zero, has at last one strictly positive root. As in the conventional case, resonance limits correspond to zero discriminant of the last equation. This discriminant is a cubic equation in $ \xi{^2} $ whose coefficients change depending on $ v $. To resolve this equation, the tangent trigonometric solving method is used and the relationship between $ \xi $ and $ v $ is established, which represents the resonance limits expression. To search resonance regions, a mathematical study is conducted on the first equation to find the positive roots number for each ($ v $, $ \xi $) combination. Compared to works already achieved, a new region appeared in the region of single resonant frequency with an anti-resonant one. The results are tested through numerical examples and applied to a fractional filter.

Citation: Assia Boubidi, Sihem Kechida, Hicham Tebbikh. Analytical study of resonance regions for second kind commensurate fractional systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020247
References:
[1]

M. Aoun, Systèmes Linéaires non Entiers et Identification par Bases Orthogonales non Entières, Ph.D thesis, Université Bordeaux 1, Talence, France, 2005. Google Scholar

[2]

M. Aoun, A. Aribi, S. Najar and M. N. Abdelkrim, On the fractional systems' fault detection: A comparison between fractional and rational residual sensitivity, in Eighth International Multi-Conference on Systems, Signals & Devices, Sousse, (2011), 1–6. doi: 10.1109/SSD.2011.5767424.  Google Scholar

[3]

A. AribiC. FargesM. AounP. MelchiorS. Najar and M. N. Abdelkrim, Fault detection based on fractional order models: Application to diagnosis of thermal systems, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3679-3693.  doi: 10.1016/j.cnsns.2014.03.006.  Google Scholar

[4]

H. Atitallah, A. Aribi and M. Aoun, Diagnosis of time-delay fractional systems, in 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, (2016), 284–292. doi: 10.1109/STA.2016.7952042.  Google Scholar

[5]

A. Ben HmedM. Amairi and M. Aoun, Stability and resonance conditions of the non-commensurate elementary fractional transfer functions of the second kind, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 842-865.  doi: 10.1016/j.cnsns.2014.07.014.  Google Scholar

[6]

J. Cao, J. Liang and B. Cao, Optimization of fractional order PID controllers based on genetic algorithms, in IEEE 2005 Machine Learning and Cybernetics, China, (2005), 5686–5689. doi: 10.1109/ICMLC.2005.1527950.  Google Scholar

[7]

D. R. Curtiss, Recent extensions of Descartes' rule of signs, Ann. of Math., 19 (1918), 251-278.  doi: 10.2307/1967494.  Google Scholar

[8]

W. DuQ. MiaoL. Tong and Y. Tang, Identification of fractional-order systems with unknown initial values and structure, Phys. Lett. A, 381 (2017), 1943-1949.  doi: 10.1016/j.physleta.2017.03.048.  Google Scholar

[9]

A. S. Elwakil, Fractional-order circuits and systems: An emerging interdisciplinary research area, IEEE Circuits and Systems Magazine, 10 (2010), 40-50.  doi: 10.1109/MCAS.2010.938637.  Google Scholar

[10]

T. T. Hartley and C. F. Lorenzo, A solution to the fundamental linear fractional order differential equation, Technical Report, 1998. Available from : https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990041952.pdf Google Scholar

[11]

M. Ikeda and S. Takahashi, Generalization of Routh's algorithm and stability criterion for non-integer integral system, Electron. Comm. Japan, 60 (1977), 41-50.  doi: 10.1155/2008/419046.  Google Scholar

[12]

E. IvanovaX. Moreau and R. Malti, Stability and resonance conditions of second-order fractional systems, J. Vib. Control, 24 (2018), 659-672.  doi: 10.1177/1077546316654790.  Google Scholar

[13]

F. Khemane, Estimation Fréquentielle par Modèle Non-entier et Approche Ensembliste: Application à la Modélisation de la Dynamique du Conducteur, Ph.D thesis, Université Bordeaux 1, Talence, France, 2011. Google Scholar

[14]

M. R. KumarV. Deepak and S. Ghosh, Fractional-order controller design in frequency domain using an improved nonlinear adaptive seeker optimization algorithm, Comp. Sci., 25 (2017), 4299-4310.  doi: 10.3906/elk-1701-294.  Google Scholar

[15]

J. Lin, Modélisation et Identification des Systèmes d'ordre non Entier, Ph.D thesis, Université de Poitiers, Poitiers, France, 2001. Google Scholar

[16]

R. Malti, A note on ${L}_p$-norms of fractional systems, Automatica J. IFAC, 49 (2013), 2923-2927.  doi: 10.1016/j.automatica.2013.06.002.  Google Scholar

[17]

R. MaltiM. AounF. Levron and A. Oustaloup, Analytical computation of the $H_2$-norm of fractional commensurate transfer functions, Automatica J. IFAC, 47 (2011), 2425-2432.  doi: 10.1016/j.automatica.2011.08.021.  Google Scholar

[18]

R. MaltiX. MoreauF. Khemane and A. Oustaloup, Stability and resonance conditions of elementary fractional transfer functions, Automatica J. IFAC, 47 (2011), 2462-2467.  doi: 10.1016/j.automatica.2011.08.029.  Google Scholar

[19]

D. Matignon, Stability properties for generalized fractional differential systems, in ESAIM Proc., Soc. Math. Appl. Indust., Paris, (1998), 145–158. doi: 10.1051/proc:1998004.  Google Scholar

[20]

F. Merrikh-BayatM. Afshar and M. Karimi-Ghartemani, Extension of the root-locus method to a certain class of fractional-order systems, ISA. Trans., 48 (2009), 48-53.  doi: 10.1016/j.isatra.2008.08.001.  Google Scholar

[21]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu, Fractional-order Systems and control: Fundamentals and Applications, Advances in Industrial Control. Springer, London, 2010. doi: 10.1007/978-1-84996-335-0.  Google Scholar

[22]

A. Oustaloup, La Commande CRONE, Edition, Hermès, Paris, France, 1991. Google Scholar

[23]

I. Podlubny, Fractional-order systems and and $PI^\lambda D^\mu$-controllers, IEEE Trans. Automat. Control, 44 (1999), 208-214.  doi: 10.1109/9.739144.  Google Scholar

[24]

T. Poinot and J.-C. Trigeassou, Identification of fractional systems using an output-error technique, Nonlinear Dynam., 38 (2004), 133-154.  doi: 10.1007/s11071-004-3751-y.  Google Scholar

[25]

A. G. RedwanA. S. Elwakil and A. M. Soliman, On the generalization of second-order filters to the the fractional-order domain, J. Circuit Syst. Comp., 18 (2009), 361-386.  doi: 10.1142/S0218126609005125.  Google Scholar

[26]

A. G. RedwanA. M. Soliman and A. S. Elwakil, First-order filters generalized to the fractional domain, J. Circuit Syst. Comp., 17 (2008), 55-66.  doi: 10.1142/S0218126608004162.  Google Scholar

[27]

J. Sabatier, O. Cois and A. Oustaloup, Modal placement control method for fractional systems: Application to a testing bench, in IEEE 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, USA, (2003), 633–639. doi: 10.1115/DETC2003/VIB-48373.  Google Scholar

[28]

J. SabatierCh. Farges and J.-C. Trigeassou, A stability test for non-commensurate fractional order systems, Syst. Control. Lett., 62 (2013), 739-746.  doi: 10.1016/j.sysconle.2013.04.008.  Google Scholar

[29]

P. Shah and S. Agashe, Review of fractional PID controller, Mechatronics, 38 (2016), 29-41.  doi: 10.1016/j.mechatronics.2016.06.005.  Google Scholar

[30]

J.-C. Trigeassou and N. Maamri, A new approach to the stability of linear fractional systems, in 2009 6th International Multi-Conference on Systems, Signals and Devices, Tunisia, (2009), 1–14. doi: 10.1109/SSD.2009.4956821.  Google Scholar

[31]

T. YingganL. HaifangW. WeiweiL. Qiusheng and G. Xinping, Parameter identification of fractional order systems using block pulse functions, Signal Process., 107 (2015), 272-281.  doi: 10.1016/j.sigpro.2014.04.011.  Google Scholar

[32]

L. Zeng, P. Cheng and W. Yong, Subspace identification for commensurate fractional order systems using instrumental variables, in IEEE 2011 Control Conference, China, (2011), 1636–1640. doi: 10.1007/s12555-012-0511-5.  Google Scholar

[33]

W. Zhong, J. Lu and Y. Miao, Fault detection observer design for fractional-order systems, in 29th Chinese Control And Decision Conference (CCDC), China, (2017), 2796–2801. doi: 10.1109/CCDC.2017.7978988.  Google Scholar

[34]

S. ZhouJ. Cao and Y. Chen, Genetic algorithm-based identification of fractional-order systems, Entropy, 15 (2013), 1624-1642.  doi: 10.3390/e15051624.  Google Scholar

show all references

References:
[1]

M. Aoun, Systèmes Linéaires non Entiers et Identification par Bases Orthogonales non Entières, Ph.D thesis, Université Bordeaux 1, Talence, France, 2005. Google Scholar

[2]

M. Aoun, A. Aribi, S. Najar and M. N. Abdelkrim, On the fractional systems' fault detection: A comparison between fractional and rational residual sensitivity, in Eighth International Multi-Conference on Systems, Signals & Devices, Sousse, (2011), 1–6. doi: 10.1109/SSD.2011.5767424.  Google Scholar

[3]

A. AribiC. FargesM. AounP. MelchiorS. Najar and M. N. Abdelkrim, Fault detection based on fractional order models: Application to diagnosis of thermal systems, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3679-3693.  doi: 10.1016/j.cnsns.2014.03.006.  Google Scholar

[4]

H. Atitallah, A. Aribi and M. Aoun, Diagnosis of time-delay fractional systems, in 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, (2016), 284–292. doi: 10.1109/STA.2016.7952042.  Google Scholar

[5]

A. Ben HmedM. Amairi and M. Aoun, Stability and resonance conditions of the non-commensurate elementary fractional transfer functions of the second kind, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 842-865.  doi: 10.1016/j.cnsns.2014.07.014.  Google Scholar

[6]

J. Cao, J. Liang and B. Cao, Optimization of fractional order PID controllers based on genetic algorithms, in IEEE 2005 Machine Learning and Cybernetics, China, (2005), 5686–5689. doi: 10.1109/ICMLC.2005.1527950.  Google Scholar

[7]

D. R. Curtiss, Recent extensions of Descartes' rule of signs, Ann. of Math., 19 (1918), 251-278.  doi: 10.2307/1967494.  Google Scholar

[8]

W. DuQ. MiaoL. Tong and Y. Tang, Identification of fractional-order systems with unknown initial values and structure, Phys. Lett. A, 381 (2017), 1943-1949.  doi: 10.1016/j.physleta.2017.03.048.  Google Scholar

[9]

A. S. Elwakil, Fractional-order circuits and systems: An emerging interdisciplinary research area, IEEE Circuits and Systems Magazine, 10 (2010), 40-50.  doi: 10.1109/MCAS.2010.938637.  Google Scholar

[10]

T. T. Hartley and C. F. Lorenzo, A solution to the fundamental linear fractional order differential equation, Technical Report, 1998. Available from : https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990041952.pdf Google Scholar

[11]

M. Ikeda and S. Takahashi, Generalization of Routh's algorithm and stability criterion for non-integer integral system, Electron. Comm. Japan, 60 (1977), 41-50.  doi: 10.1155/2008/419046.  Google Scholar

[12]

E. IvanovaX. Moreau and R. Malti, Stability and resonance conditions of second-order fractional systems, J. Vib. Control, 24 (2018), 659-672.  doi: 10.1177/1077546316654790.  Google Scholar

[13]

F. Khemane, Estimation Fréquentielle par Modèle Non-entier et Approche Ensembliste: Application à la Modélisation de la Dynamique du Conducteur, Ph.D thesis, Université Bordeaux 1, Talence, France, 2011. Google Scholar

[14]

M. R. KumarV. Deepak and S. Ghosh, Fractional-order controller design in frequency domain using an improved nonlinear adaptive seeker optimization algorithm, Comp. Sci., 25 (2017), 4299-4310.  doi: 10.3906/elk-1701-294.  Google Scholar

[15]

J. Lin, Modélisation et Identification des Systèmes d'ordre non Entier, Ph.D thesis, Université de Poitiers, Poitiers, France, 2001. Google Scholar

[16]

R. Malti, A note on ${L}_p$-norms of fractional systems, Automatica J. IFAC, 49 (2013), 2923-2927.  doi: 10.1016/j.automatica.2013.06.002.  Google Scholar

[17]

R. MaltiM. AounF. Levron and A. Oustaloup, Analytical computation of the $H_2$-norm of fractional commensurate transfer functions, Automatica J. IFAC, 47 (2011), 2425-2432.  doi: 10.1016/j.automatica.2011.08.021.  Google Scholar

[18]

R. MaltiX. MoreauF. Khemane and A. Oustaloup, Stability and resonance conditions of elementary fractional transfer functions, Automatica J. IFAC, 47 (2011), 2462-2467.  doi: 10.1016/j.automatica.2011.08.029.  Google Scholar

[19]

D. Matignon, Stability properties for generalized fractional differential systems, in ESAIM Proc., Soc. Math. Appl. Indust., Paris, (1998), 145–158. doi: 10.1051/proc:1998004.  Google Scholar

[20]

F. Merrikh-BayatM. Afshar and M. Karimi-Ghartemani, Extension of the root-locus method to a certain class of fractional-order systems, ISA. Trans., 48 (2009), 48-53.  doi: 10.1016/j.isatra.2008.08.001.  Google Scholar

[21]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu, Fractional-order Systems and control: Fundamentals and Applications, Advances in Industrial Control. Springer, London, 2010. doi: 10.1007/978-1-84996-335-0.  Google Scholar

[22]

A. Oustaloup, La Commande CRONE, Edition, Hermès, Paris, France, 1991. Google Scholar

[23]

I. Podlubny, Fractional-order systems and and $PI^\lambda D^\mu$-controllers, IEEE Trans. Automat. Control, 44 (1999), 208-214.  doi: 10.1109/9.739144.  Google Scholar

[24]

T. Poinot and J.-C. Trigeassou, Identification of fractional systems using an output-error technique, Nonlinear Dynam., 38 (2004), 133-154.  doi: 10.1007/s11071-004-3751-y.  Google Scholar

[25]

A. G. RedwanA. S. Elwakil and A. M. Soliman, On the generalization of second-order filters to the the fractional-order domain, J. Circuit Syst. Comp., 18 (2009), 361-386.  doi: 10.1142/S0218126609005125.  Google Scholar

[26]

A. G. RedwanA. M. Soliman and A. S. Elwakil, First-order filters generalized to the fractional domain, J. Circuit Syst. Comp., 17 (2008), 55-66.  doi: 10.1142/S0218126608004162.  Google Scholar

[27]

J. Sabatier, O. Cois and A. Oustaloup, Modal placement control method for fractional systems: Application to a testing bench, in IEEE 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, USA, (2003), 633–639. doi: 10.1115/DETC2003/VIB-48373.  Google Scholar

[28]

J. SabatierCh. Farges and J.-C. Trigeassou, A stability test for non-commensurate fractional order systems, Syst. Control. Lett., 62 (2013), 739-746.  doi: 10.1016/j.sysconle.2013.04.008.  Google Scholar

[29]

P. Shah and S. Agashe, Review of fractional PID controller, Mechatronics, 38 (2016), 29-41.  doi: 10.1016/j.mechatronics.2016.06.005.  Google Scholar

[30]

J.-C. Trigeassou and N. Maamri, A new approach to the stability of linear fractional systems, in 2009 6th International Multi-Conference on Systems, Signals and Devices, Tunisia, (2009), 1–14. doi: 10.1109/SSD.2009.4956821.  Google Scholar

[31]

T. YingganL. HaifangW. WeiweiL. Qiusheng and G. Xinping, Parameter identification of fractional order systems using block pulse functions, Signal Process., 107 (2015), 272-281.  doi: 10.1016/j.sigpro.2014.04.011.  Google Scholar

[32]

L. Zeng, P. Cheng and W. Yong, Subspace identification for commensurate fractional order systems using instrumental variables, in IEEE 2011 Control Conference, China, (2011), 1636–1640. doi: 10.1007/s12555-012-0511-5.  Google Scholar

[33]

W. Zhong, J. Lu and Y. Miao, Fault detection observer design for fractional-order systems, in 29th Chinese Control And Decision Conference (CCDC), China, (2017), 2796–2801. doi: 10.1109/CCDC.2017.7978988.  Google Scholar

[34]

S. ZhouJ. Cao and Y. Chen, Genetic algorithm-based identification of fractional-order systems, Entropy, 15 (2013), 1624-1642.  doi: 10.3390/e15051624.  Google Scholar

Figure 1.  Stability and Resonance regions of the second kind commensurate fractional systems in the $ v $$ \xi $-plane [18]
Figure 2.  Solution in $ y $ of equation $ D = 0 $
Figure 3.  Division of $ v $$ \xi $-plane according to discriminant signs
Figure 4.  Coefficients signs of $ f(x) $ and $ f(-x) $ in the $ v $$ \xi $-plane
Figure 5.  Division of the $ v $$ \xi $-plane according to $ D $ signs and coefficients signs of $ f(x) $ and $ f(-x) $
Figure 6.  Roots of (8) for different regions of the $ v $$ \xi $-plane according to Figure 3 division
Figure 7.  Division of the $ v $$ \xi $-plane according to the number of strictly positive roots
Figure 8.  Division of the $ v $$ \xi $-plane according to the number of strictly positive roots for stable systems
Figure 9.  New division of resonance regions of the second kind commensurate fractional systems in the $ v $$ \xi $-plane
Figure 10.  Magnitude Bode diagram for each region
Figure 11.  Sallen-Key FLPF circuit
Table 1.  Application of Descartes Rule of Signs according to Figure 5 division
Regions 1 2 31 32 41 42 5 6
$ D $ sign + + - - - - + +
$ R $ Nbr 3 3 1 1 1 1 3 3
$ f(x) $ coefs signs + + + + + - + - + + + + + + - + + - + - + - - - + + - + + - - -
Sign changes Nbr 0 3 0 2 3 1 2 1
$ R^{+} $ Nbr Possibility 0 3 or 1 0 2 or 0 3 or 1 1 2 or 0 1
$ f(-x) $ coefs signs - + - + - - - - - + - + - + + + - - - - - - + - - + + + - - + -
Sign changes Nbr 3 0 3 1 0 2 1 2
$ R^{-} $ Nbr Possibility 3 or 1 0 3 or 1 1 0 2 or 0 1 2 or 0
R+ Nbr 0 3 0 0 1 1 2 1
$ R^{-} $ Nbr 3 0 1 1 0 0 1 2
Regions 1 2 31 32 41 42 5 6
$ D $ sign + + - - - - + +
$ R $ Nbr 3 3 1 1 1 1 3 3
$ f(x) $ coefs signs + + + + + - + - + + + + + + - + + - + - + - - - + + - + + - - -
Sign changes Nbr 0 3 0 2 3 1 2 1
$ R^{+} $ Nbr Possibility 0 3 or 1 0 2 or 0 3 or 1 1 2 or 0 1
$ f(-x) $ coefs signs - + - + - - - - - + - + - + + + - - - - - - + - - + + + - - + -
Sign changes Nbr 3 0 3 1 0 2 1 2
$ R^{-} $ Nbr Possibility 3 or 1 0 3 or 1 1 0 2 or 0 1 2 or 0
R+ Nbr 0 3 0 0 1 1 2 1
$ R^{-} $ Nbr 3 0 1 1 0 0 1 2
Table 2.  Positive roots number of (8) and corresponding regions
$ R^{+} $ Nbr 0 1 2 3
Regions 1 and 3 (31 and 32) 4 (41 and 42) and 6 5 2
$ R^{+} $ Nbr 0 1 2 3
Regions 1 and 3 (31 and 32) 4 (41 and 42) and 6 5 2
Table 3.  Resonance regions of the second kind commensurate fractional systems
Region and defined domain Exemple $ (\omega_{n}=1) $
$ v=0.5 \;and\;\xi $=0.5
Gray region (8)
No resonant frequency $ \Downarrow $
$ \Omega^{1.5}+1.06\Omega^{1}+0.5\Omega^{0.5}+0.35=0 $
$\left\{\begin{array}{l}0<v \leq 0.5 {\;and\;} 0 \leq \xi \\ 0.5<v \leq 1 {\;and\;} \xi_{r l} \leq \xi\end{array}\right.$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=-0.87 \\ \Omega_{2}=-0.37+i 0.08 \\ \Omega_{3}=-0.37-i 0.08\end{array}\right.$
Yellow region $ v $=1.5 and $ \xi $=0.9
A single resonant frequency (8)
$ \Downarrow $
$ \Omega^{4.5}-1.91\Omega^{3}+1.62\Omega^{1.5}-0.64=0 $
$\left\{\begin{array}{l}0<v<1 {\;and\;} cos (v \pi / 2)<\xi<0 \\ 0.5<v<1 {\;and\;} \xi=0 \\ v=1 {\;and\;} 0<\xi<0.7071 \\ 1<v \leq 1.7837 {\;and\;}-cos (v \pi / 2)<\xi \\ 1.7837<v<2 {\;and\;}-cos (v \pi / 2)<\xi \leq \xi_{r l}\end{array}\right.$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.93 \\ \Omega_{2}=0.73+i 0.52 \\ \Omega_{3}=0.73-i 0.52\end{array}\right.$
$ \Rightarrow \omega_{res} =0.93 rd/sec $
$ v=0.8 \;and \;\xi=0.28 $
Brown region (8)
A single resonant frequency with anti-resonant frequency $ \Downarrow $
$ \Omega^{2.4}+0.26\Omega^{1.6}-0.65\Omega^{0.8}+0.09=0 $
$0.5<v<1$ and $0<\xi<\xi_{r l}$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.09 \\ \Omega_{2}=0.52 \\ \Omega_{3}=-1.00\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\omega_{{anti}-r e s}=0.09 {rd} / {sec} \\ \omega_{ {res}}=0.52 {rd} / {sec}\end{array}\right.$
$ v=1.9 \;and \;\xi=2.5 $
Green region (8)
Two resonant frequencies $ \Downarrow $
$ \Omega^{5.7}-7.41\Omega^{3.8}+13.45\Omega^{1.9}-2.47=0 $
$1.7837<v<2$ and $\xi_{r l}<\xi$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.44 \\ \Omega_{2}=1.65 \\ \Omega_{3}=2.23\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\omega_{r e s 1}=0.44 r d / s e c \\ \omega_{\text {anti}-r e s}=1.65 r d / s e c \\ \omega_{\text {res} 2}=2.23 r d / \text {sec}\end{array}\right.$
Region and defined domain Exemple $ (\omega_{n}=1) $
$ v=0.5 \;and\;\xi $=0.5
Gray region (8)
No resonant frequency $ \Downarrow $
$ \Omega^{1.5}+1.06\Omega^{1}+0.5\Omega^{0.5}+0.35=0 $
$\left\{\begin{array}{l}0<v \leq 0.5 {\;and\;} 0 \leq \xi \\ 0.5<v \leq 1 {\;and\;} \xi_{r l} \leq \xi\end{array}\right.$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=-0.87 \\ \Omega_{2}=-0.37+i 0.08 \\ \Omega_{3}=-0.37-i 0.08\end{array}\right.$
Yellow region $ v $=1.5 and $ \xi $=0.9
A single resonant frequency (8)
$ \Downarrow $
$ \Omega^{4.5}-1.91\Omega^{3}+1.62\Omega^{1.5}-0.64=0 $
$\left\{\begin{array}{l}0<v<1 {\;and\;} cos (v \pi / 2)<\xi<0 \\ 0.5<v<1 {\;and\;} \xi=0 \\ v=1 {\;and\;} 0<\xi<0.7071 \\ 1<v \leq 1.7837 {\;and\;}-cos (v \pi / 2)<\xi \\ 1.7837<v<2 {\;and\;}-cos (v \pi / 2)<\xi \leq \xi_{r l}\end{array}\right.$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.93 \\ \Omega_{2}=0.73+i 0.52 \\ \Omega_{3}=0.73-i 0.52\end{array}\right.$
$ \Rightarrow \omega_{res} =0.93 rd/sec $
$ v=0.8 \;and \;\xi=0.28 $
Brown region (8)
A single resonant frequency with anti-resonant frequency $ \Downarrow $
$ \Omega^{2.4}+0.26\Omega^{1.6}-0.65\Omega^{0.8}+0.09=0 $
$0.5<v<1$ and $0<\xi<\xi_{r l}$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.09 \\ \Omega_{2}=0.52 \\ \Omega_{3}=-1.00\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\omega_{{anti}-r e s}=0.09 {rd} / {sec} \\ \omega_{ {res}}=0.52 {rd} / {sec}\end{array}\right.$
$ v=1.9 \;and \;\xi=2.5 $
Green region (8)
Two resonant frequencies $ \Downarrow $
$ \Omega^{5.7}-7.41\Omega^{3.8}+13.45\Omega^{1.9}-2.47=0 $
$1.7837<v<2$ and $\xi_{r l}<\xi$ $\Rightarrow\left\{\begin{array}{l}\Omega_{1}=0.44 \\ \Omega_{2}=1.65 \\ \Omega_{3}=2.23\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\omega_{r e s 1}=0.44 r d / s e c \\ \omega_{\text {anti}-r e s}=1.65 r d / s e c \\ \omega_{\text {res} 2}=2.23 r d / \text {sec}\end{array}\right.$
[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[3]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020312

[4]

P. Yu, M. Han. Twelve limit cycles in a cubic order planar system with $Z_2$- symmetry. Communications on Pure & Applied Analysis, 2004, 3 (3) : 515-526. doi: 10.3934/cpaa.2004.3.515

[5]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[6]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[7]

Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059

[8]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[9]

Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511

[10]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[11]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[12]

Maoan Han, Yuhai Wu, Ping Bi. A new cubic system having eleven limit cycles. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 675-686. doi: 10.3934/dcds.2005.12.675

[13]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[14]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[15]

Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207

[16]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[17]

Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020295

[18]

Berat Karaagac. New exact solutions for some fractional order differential equations via improved sub-equation method. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 447-454. doi: 10.3934/dcdss.2019029

[19]

Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045

[20]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]