doi: 10.3934/dcdsb.2020248

Finite-time cluster synchronization of coupled dynamical systems with impulsive effects

1. 

School of Mathematics, Southeast University, Nanjing 210096, China

2. 

Department of Mathematics, Luoyang Normal University, Luoyang 471934, China

3. 

Department of Applied Mathematics, Changsha University of Science and Technology, Changsha 410114, China

* Corresponding author: Jinde Cao

Received  December 2019 Revised  June 2020 Published  August 2020

In our paper, the finite-time cluster synchronization problem is investigated for the coupled dynamical systems in networks. Based on impulsive differential equation theory and differential inequality method, two novel Lyapunov-based finite-time stability results are proposed and be used to obtain the finite-time cluster synchronization criteria for the coupled dynamical systems with synchronization and desynchronization impulsive effects, respectively. The settling time with respect to the average impulsive interval is estimated according to the sufficient synchronization conditions. It is illustrated that the introduced settling time is not only dependent on the initial conditions, but also dependent on the impulsive effects. Compared with the results without stabilizing impulses, the attractive domain of the finite-time stability can be enlarged by adding impulsive control input. Conversely, the smaller attractive domain can be obtained when the original system is subject to the destabilizing impulses. By using our criteria, the continuous feedback control can always be designed to finite-time stabilize the unstable impulsive system. Several existed results are extended and improved in the literature. Finally, typical numerical examples involving the large-scale complex network are outlined to exemplify the availability of the impulsive control and continuous feedback control, respectively.

Citation: Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020248
References:
[1]

F. AmatoM. Ariola and C. Cosentino, Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Trans. Automat. Control, 55 (2010), 1003-1008.  doi: 10.1109/TAC.2010.2041680.  Google Scholar

[2]

S. Arik, Stability analysis of delayed neural networks, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1089-1092.  doi: 10.1109/81.855465.  Google Scholar

[3]

K. L. Babcock and R. M. Westervelt, Dynamics of simple electronic neural networks, Physica D, 28 (1987), 305-316.  doi: 10.1016/0167-2789(87)90021-2.  Google Scholar

[4]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.  doi: 10.1126/science.286.5439.509.  Google Scholar

[5]

V. N. BelykhI. V. Belykh and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187.  doi: 10.1016/j.physd.2004.03.012.  Google Scholar

[6]

S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.  doi: 10.1137/S0363012997321358.  Google Scholar

[7]

S. P. Bhat and D. S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43 (1998), 678-682.  doi: 10.1109/9.668834.  Google Scholar

[8]

Y. CaoW. YuW. Ren and et. al, An overview of recent progress in the study of distributed Multi-Agent coordination, IEEE Transaction on Industrial Informations, 9 (2013), 427-438.  doi: 10.1109/TII.2012.2219061.  Google Scholar

[9]

W. Chen and L. C. Jiao, Finite-time stability theorem of stochastic nonlinear systems, Automatica J. IFAC, 46 (2010), 2105-2108.  doi: 10.1016/j.automatica.2010.08.009.  Google Scholar

[10]

D. Chen, W. Zhang, J. Cao, et. al, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Adv. Difference Equ., 2020 (2020), Paper No. 92, 16 pp.. doi: 10.1186/s13662-020-02560-w.  Google Scholar

[11]

F. De Smet and D. Aeyels, Clustering in a network of non-identical and mutually interacting agents, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2019), 745-768.  doi: 10.1098/rspa.2008.0259.  Google Scholar

[12]

D. EfimovA. PolyakovE. Fridman and et. al, Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944-1947.  doi: 10.1016/j.automatica.2014.05.010.  Google Scholar

[13]

M. Galicki, Finite-time control of robotic manipulators, Automatica J. IFAC, 51 (2015), 49-54.  doi: 10.1016/j.automatica.2014.10.089.  Google Scholar

[14]

L. V. Gambuzza and M. Frasca, A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica J. IFAC, 100 (2019), 212-218.  doi: 10.1016/j.automatica.2018.11.026.  Google Scholar

[15]

W. M. Haddad and A. L'Afflitto, Finite-time stabilization and optimal feedback control, IEEE Trans. Automat. Control, 61 (2016), 1069-1074.  doi: 10.1109/TAC.2015.2454891.  Google Scholar

[16]

J. HeP. ChengL. Shi and et. al, Time synchronzation in WSNS: A maximum-value-based consensus approach, IEEE Trans. Automat. Control, 59 (2014), 660-675.  doi: 10.1109/TAC.2013.2286893.  Google Scholar

[17]

Y. HongZ.-P. Jiang ZP and G. Feng, Finite-time input-to-state stability and applications to finite-time control design, SIAM J. Control Optim., 48 (2010), 4395-4418.  doi: 10.1137/070712043.  Google Scholar

[18]

Y. HongJ. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Control, 51 (2006), 858-862.  doi: 10.1109/TAC.2006.875006.  Google Scholar

[19]

B. HuZ.-H. GuanG. Chen and et. al, Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1537-1551.  doi: 10.1109/TNNLS.2018.2870553.  Google Scholar

[20]

C. HuJ. YuZ. Chen and et. al, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74-83.  doi: 10.1016/j.neunet.2017.02.001.  Google Scholar

[21]

C. HuJ. YuH. Jiang and et al, Exponential synchronization of complex networks with finite distributed delays coupling, IEEE Transactions on Neural Networks, 22 (2011), 1999-2010.   Google Scholar

[22]

J. HuangC. WenW. Wang and Y.-D. Song, Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica J. IFAC, 51 (2015), 292-301.  doi: 10.1016/j.automatica.2014.10.093.  Google Scholar

[23]

S. Jalan and R. E. Amritkar, Self-organized and driven phase synchronization in coupled maps, Physical Review Letters, 90 (2003), 014101. Google Scholar

[24]

S. Jalan, R. E. Amritkar and C. K. Hu, Synchronized clusters in coupled map networks. I. Numerical studies, Physical Review E, 72 (2005), 016212. Google Scholar

[25]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002. Google Scholar

[26]

M. KumarD. P. Garg and V. Kumar, Segregation of heterogeneous units in a swarm of robotic agents, IEEE Trans. Automat. Control, 55 (2010), 743-748.  doi: 10.1109/TAC.2010.2040494.  Google Scholar

[27]

Z. LiZ. DuanG. Chen and et. al, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I. Regul. Pap., 57 (2010), 213-224.  doi: 10.1109/TCSI.2009.2023937.  Google Scholar

[28]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[29]

X. Liu, Adaptive finite time stability of delayed systems with applications to network synchronization, (2020), arXiv: 2002.00145. Google Scholar

[30]

X. Liu and T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Transactions on Cybernetics, 48 (2018), 240-252.  doi: 10.1109/TCYB.2016.2630703.  Google Scholar

[31]

Z. LiuW. S. Wong and H. Cheng, Cluster synchronization of coupled systems with nonidentical linear dynamics, Internat. J. Robust Nonlinear Control, 27 (2017), 1462-1479.   Google Scholar

[32]

J. LuD. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[33]

W. Lu, B. Liu and T. Chen, Cluster synchronization in networks of coupled nonidentical dynamical systems, phChaos, 20 (2010), 013120, 12 pp. doi: 10.1063/1.3329367.  Google Scholar

[34]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[35]

S. G. Nersesov and W. M. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845.  doi: 10.1016/j.nahs.2007.12.001.  Google Scholar

[36]

A. PratapR. RajaJ. Alzabut and et. al, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Mathematical Methods in the Applied Sciences, 43 (2020), 6223-6253.  doi: 10.1002/mma.6367.  Google Scholar

[37]

M. T. Schaub, N. O'Clery N, Y. N. Billeh, et. al, Graph partitions and cluster synchronization in networks of oscillators, Chaos, 26 (2016), 094821, 14 pp. doi: 10.1063/1.4961065.  Google Scholar

[38]

Y. Shen and X. Xia, Semi-global finite-time observers for nonlinear systems, Automatica J. IFAC, 44 (2008), 3152-3156.  doi: 10.1016/j.automatica.2008.05.015.  Google Scholar

[39]

C. Song, S. Fei, Jinde Cao, et. al, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics 7 (2019), 599. doi: 10.3390/math7070599.  Google Scholar

[40]

F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, et. al, Complete characterization of the stability of cluster synchronization in complex dynamical networks, Science Advances, 2 (2016), e1501737. arXiv: 1507.04381v2. doi: 10.1126/sciadv.1501737.  Google Scholar

[41]

I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter GmbH & Co. KG, Berlin, 2009. doi: 10.1515/9783110221824.  Google Scholar

[42]

Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, et al, Closed-loop control of complex networks: a trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301, 6 pp. doi: 10.1103/PhysRevLett.119.198301.  Google Scholar

[43]

Z.-Y. SunM.-M. Yun and T. Li, A new approach to fast global finite-time stabilization of high-order nonlinear system, Automatica J. IFAC, 81 (2017), 455-463.  doi: 10.1016/j.automatica.2017.04.024.  Google Scholar

[44]

Z. TangJ. H. Park and H. Shen, Finite-time cluster synchronization of Lur'e networks: A nonsmooth approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1213-1224.  doi: 10.1109/TSMC.2017.2657779.  Google Scholar

[45]

R. TangX. Yang and X. Wan, Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79-90.  doi: 10.1016/j.neunet.2018.11.010.  Google Scholar

[46]

Available from: http://link.aps.org/supplemental/10.1103/PhysRevLett.119.198301. Google Scholar

[47]

Y. Wang and J. Cao, Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems, Nonlinear Anal. Real World Appl., 14 (2013), 842-851.  doi: 10.1016/j.nonrwa.2012.08.005.  Google Scholar

[48]

X. YangJ. Cao and J. Lu, Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Anal. Real World Appl., 12 (2011), 2252-2266.  doi: 10.1016/j.nonrwa.2011.01.007.  Google Scholar

[49]

X. YangD. W. C. HoJ. Lu and et. al, Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Transactions on Fuzzy Systems, 23 (2015), 2302-2316.  doi: 10.1109/TFUZZ.2015.2417973.  Google Scholar

[50]

T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin, 2001.  Google Scholar

[51]

T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Systems I Fund. Theory Appl., 44 (1997), 976-988.  doi: 10.1109/81.633887.  Google Scholar

[52]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.  doi: 10.1109/TAC.2015.2484328.  Google Scholar

[53]

J. YinS. KhooZ. Man and et. al, Finite-time stability and instability of stochastic nonlinear systems, Automatica J. IFAC, 47 (2011), 2671-2677.  doi: 10.1016/j.automatica.2011.08.050.  Google Scholar

[54]

T. Yu and D. Cao, Stability analysis of impulsive neural networks with piecewise constant arguments, Neural Processing Letters, 47 (2018), 153-165.  doi: 10.1007/s11063-017-9638-y.  Google Scholar

[55]

T. Yu, D. Cao, S. Liu, et. al, Stability analysis of neural networks with periodic coefficients and piecewise constant arguments, J. Franklin Inst., 353 (2016), 409–425. doi: 10.1016/j.jfranklin.2015.11.010.  Google Scholar

[56]

T. YuH. WangM. Su and et. al, Distributed-delay-dependent exponential stability of impulsive neural networks with inertial term, Neurocomputing, 313 (2018), 220-228.  doi: 10.1016/j.neucom.2018.06.033.  Google Scholar

[57]

T. YuD. CaoY. Yang and et. al, Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes, Chaos Solitons Fractals, 87 (2016), 92-101.  doi: 10.1016/j.chaos.2016.03.010.  Google Scholar

[58]

W. ZhangY. TangJ. Fang and et. al, Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances, Chaos, 21 (2011), 6-12.  doi: 10.1063/1.3671609.  Google Scholar

[59]

C. ZhaoJ. HeP. Cheng P and et. al, Consensus-based energy management in a smart grid with transmission losses and directed communication, IEEE Transactions on Smart Grid, 8 (2016), 2019-2061.  doi: 10.1109/TSG.2015.2513772.  Google Scholar

[60]

Y. Zhou, X. Wan, C. Huang, et. al, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Appl. Math. Comput., 376 (2020), 125157, 14 pp. doi: 10.1016/j.amc.2020.125157.  Google Scholar

show all references

References:
[1]

F. AmatoM. Ariola and C. Cosentino, Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Trans. Automat. Control, 55 (2010), 1003-1008.  doi: 10.1109/TAC.2010.2041680.  Google Scholar

[2]

S. Arik, Stability analysis of delayed neural networks, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1089-1092.  doi: 10.1109/81.855465.  Google Scholar

[3]

K. L. Babcock and R. M. Westervelt, Dynamics of simple electronic neural networks, Physica D, 28 (1987), 305-316.  doi: 10.1016/0167-2789(87)90021-2.  Google Scholar

[4]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.  doi: 10.1126/science.286.5439.509.  Google Scholar

[5]

V. N. BelykhI. V. Belykh and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187.  doi: 10.1016/j.physd.2004.03.012.  Google Scholar

[6]

S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.  doi: 10.1137/S0363012997321358.  Google Scholar

[7]

S. P. Bhat and D. S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43 (1998), 678-682.  doi: 10.1109/9.668834.  Google Scholar

[8]

Y. CaoW. YuW. Ren and et. al, An overview of recent progress in the study of distributed Multi-Agent coordination, IEEE Transaction on Industrial Informations, 9 (2013), 427-438.  doi: 10.1109/TII.2012.2219061.  Google Scholar

[9]

W. Chen and L. C. Jiao, Finite-time stability theorem of stochastic nonlinear systems, Automatica J. IFAC, 46 (2010), 2105-2108.  doi: 10.1016/j.automatica.2010.08.009.  Google Scholar

[10]

D. Chen, W. Zhang, J. Cao, et. al, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Adv. Difference Equ., 2020 (2020), Paper No. 92, 16 pp.. doi: 10.1186/s13662-020-02560-w.  Google Scholar

[11]

F. De Smet and D. Aeyels, Clustering in a network of non-identical and mutually interacting agents, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2019), 745-768.  doi: 10.1098/rspa.2008.0259.  Google Scholar

[12]

D. EfimovA. PolyakovE. Fridman and et. al, Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944-1947.  doi: 10.1016/j.automatica.2014.05.010.  Google Scholar

[13]

M. Galicki, Finite-time control of robotic manipulators, Automatica J. IFAC, 51 (2015), 49-54.  doi: 10.1016/j.automatica.2014.10.089.  Google Scholar

[14]

L. V. Gambuzza and M. Frasca, A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica J. IFAC, 100 (2019), 212-218.  doi: 10.1016/j.automatica.2018.11.026.  Google Scholar

[15]

W. M. Haddad and A. L'Afflitto, Finite-time stabilization and optimal feedback control, IEEE Trans. Automat. Control, 61 (2016), 1069-1074.  doi: 10.1109/TAC.2015.2454891.  Google Scholar

[16]

J. HeP. ChengL. Shi and et. al, Time synchronzation in WSNS: A maximum-value-based consensus approach, IEEE Trans. Automat. Control, 59 (2014), 660-675.  doi: 10.1109/TAC.2013.2286893.  Google Scholar

[17]

Y. HongZ.-P. Jiang ZP and G. Feng, Finite-time input-to-state stability and applications to finite-time control design, SIAM J. Control Optim., 48 (2010), 4395-4418.  doi: 10.1137/070712043.  Google Scholar

[18]

Y. HongJ. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Control, 51 (2006), 858-862.  doi: 10.1109/TAC.2006.875006.  Google Scholar

[19]

B. HuZ.-H. GuanG. Chen and et. al, Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1537-1551.  doi: 10.1109/TNNLS.2018.2870553.  Google Scholar

[20]

C. HuJ. YuZ. Chen and et. al, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74-83.  doi: 10.1016/j.neunet.2017.02.001.  Google Scholar

[21]

C. HuJ. YuH. Jiang and et al, Exponential synchronization of complex networks with finite distributed delays coupling, IEEE Transactions on Neural Networks, 22 (2011), 1999-2010.   Google Scholar

[22]

J. HuangC. WenW. Wang and Y.-D. Song, Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica J. IFAC, 51 (2015), 292-301.  doi: 10.1016/j.automatica.2014.10.093.  Google Scholar

[23]

S. Jalan and R. E. Amritkar, Self-organized and driven phase synchronization in coupled maps, Physical Review Letters, 90 (2003), 014101. Google Scholar

[24]

S. Jalan, R. E. Amritkar and C. K. Hu, Synchronized clusters in coupled map networks. I. Numerical studies, Physical Review E, 72 (2005), 016212. Google Scholar

[25]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002. Google Scholar

[26]

M. KumarD. P. Garg and V. Kumar, Segregation of heterogeneous units in a swarm of robotic agents, IEEE Trans. Automat. Control, 55 (2010), 743-748.  doi: 10.1109/TAC.2010.2040494.  Google Scholar

[27]

Z. LiZ. DuanG. Chen and et. al, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I. Regul. Pap., 57 (2010), 213-224.  doi: 10.1109/TCSI.2009.2023937.  Google Scholar

[28]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[29]

X. Liu, Adaptive finite time stability of delayed systems with applications to network synchronization, (2020), arXiv: 2002.00145. Google Scholar

[30]

X. Liu and T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Transactions on Cybernetics, 48 (2018), 240-252.  doi: 10.1109/TCYB.2016.2630703.  Google Scholar

[31]

Z. LiuW. S. Wong and H. Cheng, Cluster synchronization of coupled systems with nonidentical linear dynamics, Internat. J. Robust Nonlinear Control, 27 (2017), 1462-1479.   Google Scholar

[32]

J. LuD. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[33]

W. Lu, B. Liu and T. Chen, Cluster synchronization in networks of coupled nonidentical dynamical systems, phChaos, 20 (2010), 013120, 12 pp. doi: 10.1063/1.3329367.  Google Scholar

[34]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[35]

S. G. Nersesov and W. M. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845.  doi: 10.1016/j.nahs.2007.12.001.  Google Scholar

[36]

A. PratapR. RajaJ. Alzabut and et. al, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Mathematical Methods in the Applied Sciences, 43 (2020), 6223-6253.  doi: 10.1002/mma.6367.  Google Scholar

[37]

M. T. Schaub, N. O'Clery N, Y. N. Billeh, et. al, Graph partitions and cluster synchronization in networks of oscillators, Chaos, 26 (2016), 094821, 14 pp. doi: 10.1063/1.4961065.  Google Scholar

[38]

Y. Shen and X. Xia, Semi-global finite-time observers for nonlinear systems, Automatica J. IFAC, 44 (2008), 3152-3156.  doi: 10.1016/j.automatica.2008.05.015.  Google Scholar

[39]

C. Song, S. Fei, Jinde Cao, et. al, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics 7 (2019), 599. doi: 10.3390/math7070599.  Google Scholar

[40]

F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, et. al, Complete characterization of the stability of cluster synchronization in complex dynamical networks, Science Advances, 2 (2016), e1501737. arXiv: 1507.04381v2. doi: 10.1126/sciadv.1501737.  Google Scholar

[41]

I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter GmbH & Co. KG, Berlin, 2009. doi: 10.1515/9783110221824.  Google Scholar

[42]

Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, et al, Closed-loop control of complex networks: a trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301, 6 pp. doi: 10.1103/PhysRevLett.119.198301.  Google Scholar

[43]

Z.-Y. SunM.-M. Yun and T. Li, A new approach to fast global finite-time stabilization of high-order nonlinear system, Automatica J. IFAC, 81 (2017), 455-463.  doi: 10.1016/j.automatica.2017.04.024.  Google Scholar

[44]

Z. TangJ. H. Park and H. Shen, Finite-time cluster synchronization of Lur'e networks: A nonsmooth approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1213-1224.  doi: 10.1109/TSMC.2017.2657779.  Google Scholar

[45]

R. TangX. Yang and X. Wan, Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79-90.  doi: 10.1016/j.neunet.2018.11.010.  Google Scholar

[46]

Available from: http://link.aps.org/supplemental/10.1103/PhysRevLett.119.198301. Google Scholar

[47]

Y. Wang and J. Cao, Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems, Nonlinear Anal. Real World Appl., 14 (2013), 842-851.  doi: 10.1016/j.nonrwa.2012.08.005.  Google Scholar

[48]

X. YangJ. Cao and J. Lu, Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Anal. Real World Appl., 12 (2011), 2252-2266.  doi: 10.1016/j.nonrwa.2011.01.007.  Google Scholar

[49]

X. YangD. W. C. HoJ. Lu and et. al, Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Transactions on Fuzzy Systems, 23 (2015), 2302-2316.  doi: 10.1109/TFUZZ.2015.2417973.  Google Scholar

[50]

T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin, 2001.  Google Scholar

[51]

T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Systems I Fund. Theory Appl., 44 (1997), 976-988.  doi: 10.1109/81.633887.  Google Scholar

[52]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.  doi: 10.1109/TAC.2015.2484328.  Google Scholar

[53]

J. YinS. KhooZ. Man and et. al, Finite-time stability and instability of stochastic nonlinear systems, Automatica J. IFAC, 47 (2011), 2671-2677.  doi: 10.1016/j.automatica.2011.08.050.  Google Scholar

[54]

T. Yu and D. Cao, Stability analysis of impulsive neural networks with piecewise constant arguments, Neural Processing Letters, 47 (2018), 153-165.  doi: 10.1007/s11063-017-9638-y.  Google Scholar

[55]

T. Yu, D. Cao, S. Liu, et. al, Stability analysis of neural networks with periodic coefficients and piecewise constant arguments, J. Franklin Inst., 353 (2016), 409–425. doi: 10.1016/j.jfranklin.2015.11.010.  Google Scholar

[56]

T. YuH. WangM. Su and et. al, Distributed-delay-dependent exponential stability of impulsive neural networks with inertial term, Neurocomputing, 313 (2018), 220-228.  doi: 10.1016/j.neucom.2018.06.033.  Google Scholar

[57]

T. YuD. CaoY. Yang and et. al, Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes, Chaos Solitons Fractals, 87 (2016), 92-101.  doi: 10.1016/j.chaos.2016.03.010.  Google Scholar

[58]

W. ZhangY. TangJ. Fang and et. al, Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances, Chaos, 21 (2011), 6-12.  doi: 10.1063/1.3671609.  Google Scholar

[59]

C. ZhaoJ. HeP. Cheng P and et. al, Consensus-based energy management in a smart grid with transmission losses and directed communication, IEEE Transactions on Smart Grid, 8 (2016), 2019-2061.  doi: 10.1109/TSG.2015.2513772.  Google Scholar

[60]

Y. Zhou, X. Wan, C. Huang, et. al, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Appl. Math. Comput., 376 (2020), 125157, 14 pp. doi: 10.1016/j.amc.2020.125157.  Google Scholar

Figure 1.  Phase plots of (a). the system (61) and (b). the system (62) in Example 1
Figure 2.  Time histories of (a). the coupled system without control input, (b-d). the variables $ x_{i1} $, $ x_{i2} $ and $ x_{i3} $ of the coupled system with synchronization impulsive effect in Example 1
Figure 3.  Under control input, time histories of (a). the error function $ E(t) $ in Eq. (63), (b-d). the variables $ e_{i1} $, $ e_{i2} $ and $ e_{i3} $ of the synchronization error system in Example 1
Figure 4.  With desynchronization impulses, time histories of (a-c). the variables $ x_{i1} $, $ x_{i2} $ and $ x_{i3} $ of the coupled system with nonidentical nodes (61) and (62), (d-f). the variables $ e_{i1} $, $ e_{i2} $ and $ e_{i3} $ of the synchronization error system in Example 1
Figure 5.  Time histories of (a-c). the variables $ x_{i1} $, $ x_{i2} $ and $ x_{i3} $ of the complex networks, (d-f). the variables $ e_{i1} $, $ e_{i2} $ and $ e_{i3} $ of the synchronization error system in Example 2
[1]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[2]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[3]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[4]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[5]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[10]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[11]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[14]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[15]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[16]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[17]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[18]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[19]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[20]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]