
-
Previous Article
Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations
- DCDS-B Home
- This Issue
-
Next Article
A stochastic differential equation SIS epidemic model with regime switching
Finite-time cluster synchronization of coupled dynamical systems with impulsive effects
1. | School of Mathematics, Southeast University, Nanjing 210096, China |
2. | Department of Mathematics, Luoyang Normal University, Luoyang 471934, China |
3. | Department of Applied Mathematics, Changsha University of Science and Technology, Changsha 410114, China |
In our paper, the finite-time cluster synchronization problem is investigated for the coupled dynamical systems in networks. Based on impulsive differential equation theory and differential inequality method, two novel Lyapunov-based finite-time stability results are proposed and be used to obtain the finite-time cluster synchronization criteria for the coupled dynamical systems with synchronization and desynchronization impulsive effects, respectively. The settling time with respect to the average impulsive interval is estimated according to the sufficient synchronization conditions. It is illustrated that the introduced settling time is not only dependent on the initial conditions, but also dependent on the impulsive effects. Compared with the results without stabilizing impulses, the attractive domain of the finite-time stability can be enlarged by adding impulsive control input. Conversely, the smaller attractive domain can be obtained when the original system is subject to the destabilizing impulses. By using our criteria, the continuous feedback control can always be designed to finite-time stabilize the unstable impulsive system. Several existed results are extended and improved in the literature. Finally, typical numerical examples involving the large-scale complex network are outlined to exemplify the availability of the impulsive control and continuous feedback control, respectively.
References:
[1] |
F. Amato, M. Ariola and C. Cosentino,
Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Trans. Automat. Control, 55 (2010), 1003-1008.
doi: 10.1109/TAC.2010.2041680. |
[2] |
S. Arik,
Stability analysis of delayed neural networks, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1089-1092.
doi: 10.1109/81.855465. |
[3] |
K. L. Babcock and R. M. Westervelt,
Dynamics of simple electronic neural networks, Physica D, 28 (1987), 305-316.
doi: 10.1016/0167-2789(87)90021-2. |
[4] |
A.-L. Barabási and R. Albert,
Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[5] |
V. N. Belykh, I. V. Belykh and M. Hasler,
Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187.
doi: 10.1016/j.physd.2004.03.012. |
[6] |
S. P. Bhat and D. S. Bernstein,
Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.
doi: 10.1137/S0363012997321358. |
[7] |
S. P. Bhat and D. S. Bernstein,
Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43 (1998), 678-682.
doi: 10.1109/9.668834. |
[8] |
Y. Cao, W. Yu, W. Ren and et. al,
An overview of recent progress in the study of distributed Multi-Agent coordination, IEEE Transaction on Industrial Informations, 9 (2013), 427-438.
doi: 10.1109/TII.2012.2219061. |
[9] |
W. Chen and L. C. Jiao,
Finite-time stability theorem of stochastic nonlinear systems, Automatica J. IFAC, 46 (2010), 2105-2108.
doi: 10.1016/j.automatica.2010.08.009. |
[10] |
D. Chen, W. Zhang, J. Cao, et. al, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Adv. Difference Equ., 2020 (2020), Paper No. 92, 16 pp..
doi: 10.1186/s13662-020-02560-w. |
[11] |
F. De Smet and D. Aeyels,
Clustering in a network of non-identical and mutually interacting agents, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2019), 745-768.
doi: 10.1098/rspa.2008.0259. |
[12] |
D. Efimov, A. Polyakov, E. Fridman and et. al,
Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944-1947.
doi: 10.1016/j.automatica.2014.05.010. |
[13] |
M. Galicki,
Finite-time control of robotic manipulators, Automatica J. IFAC, 51 (2015), 49-54.
doi: 10.1016/j.automatica.2014.10.089. |
[14] |
L. V. Gambuzza and M. Frasca,
A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica J. IFAC, 100 (2019), 212-218.
doi: 10.1016/j.automatica.2018.11.026. |
[15] |
W. M. Haddad and A. L'Afflitto,
Finite-time stabilization and optimal feedback control, IEEE Trans. Automat. Control, 61 (2016), 1069-1074.
doi: 10.1109/TAC.2015.2454891. |
[16] |
J. He, P. Cheng, L. Shi and et. al,
Time synchronzation in WSNS: A maximum-value-based consensus approach, IEEE Trans. Automat. Control, 59 (2014), 660-675.
doi: 10.1109/TAC.2013.2286893. |
[17] |
Y. Hong, Z.-P. Jiang ZP and G. Feng,
Finite-time input-to-state stability and applications to finite-time control design, SIAM J. Control Optim., 48 (2010), 4395-4418.
doi: 10.1137/070712043. |
[18] |
Y. Hong, J. Wang and D. Cheng,
Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Control, 51 (2006), 858-862.
doi: 10.1109/TAC.2006.875006. |
[19] |
B. Hu, Z.-H. Guan, G. Chen and et. al,
Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1537-1551.
doi: 10.1109/TNNLS.2018.2870553. |
[20] |
C. Hu, J. Yu, Z. Chen and et. al,
Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74-83.
doi: 10.1016/j.neunet.2017.02.001. |
[21] |
C. Hu, J. Yu, H. Jiang and et al, Exponential synchronization of complex networks with finite distributed delays coupling, IEEE Transactions on Neural Networks, 22 (2011), 1999-2010. Google Scholar |
[22] |
J. Huang, C. Wen, W. Wang and Y.-D. Song,
Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica J. IFAC, 51 (2015), 292-301.
doi: 10.1016/j.automatica.2014.10.093. |
[23] |
S. Jalan and R. E. Amritkar, Self-organized and driven phase synchronization in coupled maps, Physical Review Letters, 90 (2003), 014101. Google Scholar |
[24] |
S. Jalan, R. E. Amritkar and C. K. Hu, Synchronized clusters in coupled map networks. I. Numerical studies, Physical Review E, 72 (2005), 016212. Google Scholar |
[25] |
H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002. Google Scholar |
[26] |
M. Kumar, D. P. Garg and V. Kumar,
Segregation of heterogeneous units in a swarm of robotic agents, IEEE Trans. Automat. Control, 55 (2010), 743-748.
doi: 10.1109/TAC.2010.2040494. |
[27] |
Z. Li, Z. Duan, G. Chen and et. al,
Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I. Regul. Pap., 57 (2010), 213-224.
doi: 10.1109/TCSI.2009.2023937. |
[28] |
X. Li, D. W. C. Ho and J. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[29] |
X. Liu, Adaptive finite time stability of delayed systems with applications to network synchronization, (2020), arXiv: 2002.00145. Google Scholar |
[30] |
X. Liu and T. Chen,
Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Transactions on Cybernetics, 48 (2018), 240-252.
doi: 10.1109/TCYB.2016.2630703. |
[31] |
Z. Liu, W. S. Wong and H. Cheng,
Cluster synchronization of coupled systems with nonidentical linear dynamics, Internat. J. Robust Nonlinear Control, 27 (2017), 1462-1479.
|
[32] |
J. Lu, D. W. C. Ho and J. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[33] |
W. Lu, B. Liu and T. Chen, Cluster synchronization in networks of coupled nonidentical dynamical systems, phChaos, 20 (2010), 013120, 12 pp.
doi: 10.1063/1.3329367. |
[34] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[35] |
S. G. Nersesov and W. M. Haddad,
Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845.
doi: 10.1016/j.nahs.2007.12.001. |
[36] |
A. Pratap, R. Raja, J. Alzabut and et. al,
Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Mathematical Methods in the Applied Sciences, 43 (2020), 6223-6253.
doi: 10.1002/mma.6367. |
[37] |
M. T. Schaub, N. O'Clery N, Y. N. Billeh, et. al, Graph partitions and cluster synchronization in networks of oscillators, Chaos, 26 (2016), 094821, 14 pp.
doi: 10.1063/1.4961065. |
[38] |
Y. Shen and X. Xia,
Semi-global finite-time observers for nonlinear systems, Automatica J. IFAC, 44 (2008), 3152-3156.
doi: 10.1016/j.automatica.2008.05.015. |
[39] |
C. Song, S. Fei, Jinde Cao, et. al, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics 7 (2019), 599.
doi: 10.3390/math7070599. |
[40] |
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, et. al, Complete characterization of the stability of cluster synchronization in complex dynamical networks, Science Advances, 2 (2016), e1501737. arXiv: 1507.04381v2.
doi: 10.1126/sciadv.1501737. |
[41] |
I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter GmbH & Co. KG, Berlin, 2009.
doi: 10.1515/9783110221824. |
[42] |
Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, et al, Closed-loop control of complex networks: a trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301, 6 pp.
doi: 10.1103/PhysRevLett.119.198301. |
[43] |
Z.-Y. Sun, M.-M. Yun and T. Li,
A new approach to fast global finite-time stabilization of high-order nonlinear system, Automatica J. IFAC, 81 (2017), 455-463.
doi: 10.1016/j.automatica.2017.04.024. |
[44] |
Z. Tang, J. H. Park and H. Shen,
Finite-time cluster synchronization of Lur'e networks: A nonsmooth approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1213-1224.
doi: 10.1109/TSMC.2017.2657779. |
[45] |
R. Tang, X. Yang and X. Wan,
Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79-90.
doi: 10.1016/j.neunet.2018.11.010. |
[46] |
Available from: http://link.aps.org/supplemental/10.1103/PhysRevLett.119.198301. Google Scholar |
[47] |
Y. Wang and J. Cao,
Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems, Nonlinear Anal. Real World Appl., 14 (2013), 842-851.
doi: 10.1016/j.nonrwa.2012.08.005. |
[48] |
X. Yang, J. Cao and J. Lu,
Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Anal. Real World Appl., 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007. |
[49] |
X. Yang, D. W. C. Ho, J. Lu and et. al,
Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Transactions on Fuzzy Systems, 23 (2015), 2302-2316.
doi: 10.1109/TFUZZ.2015.2417973. |
[50] |
T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin, 2001. |
[51] |
T. Yang and L. O. Chua,
Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Systems I Fund. Theory Appl., 44 (1997), 976-988.
doi: 10.1109/81.633887. |
[52] |
X. Yang and J. Lu,
Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.
doi: 10.1109/TAC.2015.2484328. |
[53] |
J. Yin, S. Khoo, Z. Man and et. al,
Finite-time stability and instability of stochastic nonlinear systems, Automatica J. IFAC, 47 (2011), 2671-2677.
doi: 10.1016/j.automatica.2011.08.050. |
[54] |
T. Yu and D. Cao,
Stability analysis of impulsive neural networks with piecewise constant arguments, Neural Processing Letters, 47 (2018), 153-165.
doi: 10.1007/s11063-017-9638-y. |
[55] |
T. Yu, D. Cao, S. Liu, et. al, Stability analysis of neural networks with periodic coefficients and piecewise constant arguments, J. Franklin Inst., 353 (2016), 409–425.
doi: 10.1016/j.jfranklin.2015.11.010. |
[56] |
T. Yu, H. Wang, M. Su and et. al,
Distributed-delay-dependent exponential stability of impulsive neural networks with inertial term, Neurocomputing, 313 (2018), 220-228.
doi: 10.1016/j.neucom.2018.06.033. |
[57] |
T. Yu, D. Cao, Y. Yang and et. al,
Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes, Chaos Solitons Fractals, 87 (2016), 92-101.
doi: 10.1016/j.chaos.2016.03.010. |
[58] |
W. Zhang, Y. Tang, J. Fang and et. al,
Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances, Chaos, 21 (2011), 6-12.
doi: 10.1063/1.3671609. |
[59] |
C. Zhao, J. He, P. Cheng P and et. al,
Consensus-based energy management in a smart grid with transmission losses and directed communication, IEEE Transactions on Smart Grid, 8 (2016), 2019-2061.
doi: 10.1109/TSG.2015.2513772. |
[60] |
Y. Zhou, X. Wan, C. Huang, et. al, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Appl. Math. Comput., 376 (2020), 125157, 14 pp.
doi: 10.1016/j.amc.2020.125157. |
show all references
References:
[1] |
F. Amato, M. Ariola and C. Cosentino,
Finite-time stability of linear time-varying systems: analysis and controller design, IEEE Trans. Automat. Control, 55 (2010), 1003-1008.
doi: 10.1109/TAC.2010.2041680. |
[2] |
S. Arik,
Stability analysis of delayed neural networks, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1089-1092.
doi: 10.1109/81.855465. |
[3] |
K. L. Babcock and R. M. Westervelt,
Dynamics of simple electronic neural networks, Physica D, 28 (1987), 305-316.
doi: 10.1016/0167-2789(87)90021-2. |
[4] |
A.-L. Barabási and R. Albert,
Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[5] |
V. N. Belykh, I. V. Belykh and M. Hasler,
Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195 (2004), 159-187.
doi: 10.1016/j.physd.2004.03.012. |
[6] |
S. P. Bhat and D. S. Bernstein,
Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.
doi: 10.1137/S0363012997321358. |
[7] |
S. P. Bhat and D. S. Bernstein,
Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43 (1998), 678-682.
doi: 10.1109/9.668834. |
[8] |
Y. Cao, W. Yu, W. Ren and et. al,
An overview of recent progress in the study of distributed Multi-Agent coordination, IEEE Transaction on Industrial Informations, 9 (2013), 427-438.
doi: 10.1109/TII.2012.2219061. |
[9] |
W. Chen and L. C. Jiao,
Finite-time stability theorem of stochastic nonlinear systems, Automatica J. IFAC, 46 (2010), 2105-2108.
doi: 10.1016/j.automatica.2010.08.009. |
[10] |
D. Chen, W. Zhang, J. Cao, et. al, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Adv. Difference Equ., 2020 (2020), Paper No. 92, 16 pp..
doi: 10.1186/s13662-020-02560-w. |
[11] |
F. De Smet and D. Aeyels,
Clustering in a network of non-identical and mutually interacting agents, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2019), 745-768.
doi: 10.1098/rspa.2008.0259. |
[12] |
D. Efimov, A. Polyakov, E. Fridman and et. al,
Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944-1947.
doi: 10.1016/j.automatica.2014.05.010. |
[13] |
M. Galicki,
Finite-time control of robotic manipulators, Automatica J. IFAC, 51 (2015), 49-54.
doi: 10.1016/j.automatica.2014.10.089. |
[14] |
L. V. Gambuzza and M. Frasca,
A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica J. IFAC, 100 (2019), 212-218.
doi: 10.1016/j.automatica.2018.11.026. |
[15] |
W. M. Haddad and A. L'Afflitto,
Finite-time stabilization and optimal feedback control, IEEE Trans. Automat. Control, 61 (2016), 1069-1074.
doi: 10.1109/TAC.2015.2454891. |
[16] |
J. He, P. Cheng, L. Shi and et. al,
Time synchronzation in WSNS: A maximum-value-based consensus approach, IEEE Trans. Automat. Control, 59 (2014), 660-675.
doi: 10.1109/TAC.2013.2286893. |
[17] |
Y. Hong, Z.-P. Jiang ZP and G. Feng,
Finite-time input-to-state stability and applications to finite-time control design, SIAM J. Control Optim., 48 (2010), 4395-4418.
doi: 10.1137/070712043. |
[18] |
Y. Hong, J. Wang and D. Cheng,
Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Control, 51 (2006), 858-862.
doi: 10.1109/TAC.2006.875006. |
[19] |
B. Hu, Z.-H. Guan, G. Chen and et. al,
Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1537-1551.
doi: 10.1109/TNNLS.2018.2870553. |
[20] |
C. Hu, J. Yu, Z. Chen and et. al,
Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74-83.
doi: 10.1016/j.neunet.2017.02.001. |
[21] |
C. Hu, J. Yu, H. Jiang and et al, Exponential synchronization of complex networks with finite distributed delays coupling, IEEE Transactions on Neural Networks, 22 (2011), 1999-2010. Google Scholar |
[22] |
J. Huang, C. Wen, W. Wang and Y.-D. Song,
Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica J. IFAC, 51 (2015), 292-301.
doi: 10.1016/j.automatica.2014.10.093. |
[23] |
S. Jalan and R. E. Amritkar, Self-organized and driven phase synchronization in coupled maps, Physical Review Letters, 90 (2003), 014101. Google Scholar |
[24] |
S. Jalan, R. E. Amritkar and C. K. Hu, Synchronized clusters in coupled map networks. I. Numerical studies, Physical Review E, 72 (2005), 016212. Google Scholar |
[25] |
H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002. Google Scholar |
[26] |
M. Kumar, D. P. Garg and V. Kumar,
Segregation of heterogeneous units in a swarm of robotic agents, IEEE Trans. Automat. Control, 55 (2010), 743-748.
doi: 10.1109/TAC.2010.2040494. |
[27] |
Z. Li, Z. Duan, G. Chen and et. al,
Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I. Regul. Pap., 57 (2010), 213-224.
doi: 10.1109/TCSI.2009.2023937. |
[28] |
X. Li, D. W. C. Ho and J. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[29] |
X. Liu, Adaptive finite time stability of delayed systems with applications to network synchronization, (2020), arXiv: 2002.00145. Google Scholar |
[30] |
X. Liu and T. Chen,
Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Transactions on Cybernetics, 48 (2018), 240-252.
doi: 10.1109/TCYB.2016.2630703. |
[31] |
Z. Liu, W. S. Wong and H. Cheng,
Cluster synchronization of coupled systems with nonidentical linear dynamics, Internat. J. Robust Nonlinear Control, 27 (2017), 1462-1479.
|
[32] |
J. Lu, D. W. C. Ho and J. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[33] |
W. Lu, B. Liu and T. Chen, Cluster synchronization in networks of coupled nonidentical dynamical systems, phChaos, 20 (2010), 013120, 12 pp.
doi: 10.1063/1.3329367. |
[34] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[35] |
S. G. Nersesov and W. M. Haddad,
Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845.
doi: 10.1016/j.nahs.2007.12.001. |
[36] |
A. Pratap, R. Raja, J. Alzabut and et. al,
Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Mathematical Methods in the Applied Sciences, 43 (2020), 6223-6253.
doi: 10.1002/mma.6367. |
[37] |
M. T. Schaub, N. O'Clery N, Y. N. Billeh, et. al, Graph partitions and cluster synchronization in networks of oscillators, Chaos, 26 (2016), 094821, 14 pp.
doi: 10.1063/1.4961065. |
[38] |
Y. Shen and X. Xia,
Semi-global finite-time observers for nonlinear systems, Automatica J. IFAC, 44 (2008), 3152-3156.
doi: 10.1016/j.automatica.2008.05.015. |
[39] |
C. Song, S. Fei, Jinde Cao, et. al, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics 7 (2019), 599.
doi: 10.3390/math7070599. |
[40] |
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, et. al, Complete characterization of the stability of cluster synchronization in complex dynamical networks, Science Advances, 2 (2016), e1501737. arXiv: 1507.04381v2.
doi: 10.1126/sciadv.1501737. |
[41] |
I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter GmbH & Co. KG, Berlin, 2009.
doi: 10.1515/9783110221824. |
[42] |
Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, et al, Closed-loop control of complex networks: a trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301, 6 pp.
doi: 10.1103/PhysRevLett.119.198301. |
[43] |
Z.-Y. Sun, M.-M. Yun and T. Li,
A new approach to fast global finite-time stabilization of high-order nonlinear system, Automatica J. IFAC, 81 (2017), 455-463.
doi: 10.1016/j.automatica.2017.04.024. |
[44] |
Z. Tang, J. H. Park and H. Shen,
Finite-time cluster synchronization of Lur'e networks: A nonsmooth approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 1213-1224.
doi: 10.1109/TSMC.2017.2657779. |
[45] |
R. Tang, X. Yang and X. Wan,
Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79-90.
doi: 10.1016/j.neunet.2018.11.010. |
[46] |
Available from: http://link.aps.org/supplemental/10.1103/PhysRevLett.119.198301. Google Scholar |
[47] |
Y. Wang and J. Cao,
Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems, Nonlinear Anal. Real World Appl., 14 (2013), 842-851.
doi: 10.1016/j.nonrwa.2012.08.005. |
[48] |
X. Yang, J. Cao and J. Lu,
Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Anal. Real World Appl., 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007. |
[49] |
X. Yang, D. W. C. Ho, J. Lu and et. al,
Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Transactions on Fuzzy Systems, 23 (2015), 2302-2316.
doi: 10.1109/TFUZZ.2015.2417973. |
[50] |
T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin, 2001. |
[51] |
T. Yang and L. O. Chua,
Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Systems I Fund. Theory Appl., 44 (1997), 976-988.
doi: 10.1109/81.633887. |
[52] |
X. Yang and J. Lu,
Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.
doi: 10.1109/TAC.2015.2484328. |
[53] |
J. Yin, S. Khoo, Z. Man and et. al,
Finite-time stability and instability of stochastic nonlinear systems, Automatica J. IFAC, 47 (2011), 2671-2677.
doi: 10.1016/j.automatica.2011.08.050. |
[54] |
T. Yu and D. Cao,
Stability analysis of impulsive neural networks with piecewise constant arguments, Neural Processing Letters, 47 (2018), 153-165.
doi: 10.1007/s11063-017-9638-y. |
[55] |
T. Yu, D. Cao, S. Liu, et. al, Stability analysis of neural networks with periodic coefficients and piecewise constant arguments, J. Franklin Inst., 353 (2016), 409–425.
doi: 10.1016/j.jfranklin.2015.11.010. |
[56] |
T. Yu, H. Wang, M. Su and et. al,
Distributed-delay-dependent exponential stability of impulsive neural networks with inertial term, Neurocomputing, 313 (2018), 220-228.
doi: 10.1016/j.neucom.2018.06.033. |
[57] |
T. Yu, D. Cao, Y. Yang and et. al,
Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes, Chaos Solitons Fractals, 87 (2016), 92-101.
doi: 10.1016/j.chaos.2016.03.010. |
[58] |
W. Zhang, Y. Tang, J. Fang and et. al,
Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances, Chaos, 21 (2011), 6-12.
doi: 10.1063/1.3671609. |
[59] |
C. Zhao, J. He, P. Cheng P and et. al,
Consensus-based energy management in a smart grid with transmission losses and directed communication, IEEE Transactions on Smart Grid, 8 (2016), 2019-2061.
doi: 10.1109/TSG.2015.2513772. |
[60] |
Y. Zhou, X. Wan, C. Huang, et. al, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Appl. Math. Comput., 376 (2020), 125157, 14 pp.
doi: 10.1016/j.amc.2020.125157. |





[1] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[3] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[4] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[5] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[6] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[7] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[10] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[11] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[12] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[13] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[14] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[15] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[16] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[17] |
Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021024 |
[18] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[19] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]