• Previous Article
    Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory
  • DCDS-B Home
  • This Issue
  • Next Article
    Recurrent solutions of the Schrödinger-KdV system with boundary forces
doi: 10.3934/dcdsb.2020251

Collision-free flocking for a time-delay system

College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China

* Corresponding author: Xiao Wang

Received  February 2020 Revised  July 2020 Published  August 2020

Fund Project: This work was supported by the NSFC (Grant No.11401577 and No.11671011)

The co-existence of collision avoidance and time-asymptotic flocking of multi-particle systems with measurement delay is considered. Based on Lyapunov stability theory and some auxiliary differential inequalities, a delay-related sufficient condition is established for this system to admit a time-asymptotic flocking and collision avoidance. The estimated range of the delay is given, which may affect the flocking performance of the system. An analytical expression was proposed to quantitatively analyze the upper bound of this delay. Under the flocking conditions, the exponential decay of the relative velocity of any two particles in the system is characterized. Particularly, the collision-free flocking conditions are also given for the case without delay. This work verifies that both collision avoidance and flocking behaviors can be achieved simultaneously in a delay system.

Citation: Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020251
References:
[1]

J. A. CarrilloY.-P. ChoiP. B. Mucha and et al, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[2]

M. L. ChenX. LiX. Wang and et al., Flocking and collision avoidance of a Cucker-Smale type system with singular weights, J. Appl. Anal. Comput., 10 (2019), 140-152.   Google Scholar

[3]

M. Chen and X. Wang, Flocking dynamics for multi-agent system with measurement delay, Math. Comput. Simulat., 171 (2020), 187-200.  doi: 10.1016/j.matcom.2019.09.015.  Google Scholar

[4]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[5]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[6]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789–804. arXiv: 1902.03819. doi: 10.3934/nhm.2019032.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

R. ErbanJ. Haŝkovec and Y. Sun, A Cucker–Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Internat. J. Control, 77 (2004), 1567-1579.  doi: 10.1080/00207170412331330021.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Upper Saddle River, NJ: Prentice hall, 2002. Google Scholar

[14] J. C. Kuang, Common Inequalities, Shandong Science and Technology Press, 2004.   Google Scholar
[15]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[16]

J. ParkH. J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[17]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.   Google Scholar

[18]

Z. T. Qiu, General theory of delayed functional differential equations, Journal of National University of Defense Technology, 04 (1982), 132-143.   Google Scholar

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

show all references

References:
[1]

J. A. CarrilloY.-P. ChoiP. B. Mucha and et al, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[2]

M. L. ChenX. LiX. Wang and et al., Flocking and collision avoidance of a Cucker-Smale type system with singular weights, J. Appl. Anal. Comput., 10 (2019), 140-152.   Google Scholar

[3]

M. Chen and X. Wang, Flocking dynamics for multi-agent system with measurement delay, Math. Comput. Simulat., 171 (2020), 187-200.  doi: 10.1016/j.matcom.2019.09.015.  Google Scholar

[4]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[5]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[6]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789–804. arXiv: 1902.03819. doi: 10.3934/nhm.2019032.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

R. ErbanJ. Haŝkovec and Y. Sun, A Cucker–Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Internat. J. Control, 77 (2004), 1567-1579.  doi: 10.1080/00207170412331330021.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Upper Saddle River, NJ: Prentice hall, 2002. Google Scholar

[14] J. C. Kuang, Common Inequalities, Shandong Science and Technology Press, 2004.   Google Scholar
[15]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[16]

J. ParkH. J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[17]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.   Google Scholar

[18]

Z. T. Qiu, General theory of delayed functional differential equations, Journal of National University of Defense Technology, 04 (1982), 132-143.   Google Scholar

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

Figure 1.  $ \beta $ = 0.5, $ \tau $ = 0.01, the relative position of any two particles in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
Figure 2.  $ \beta $ = 0.6, $ \tau $ = 0.01, the relative position of any two particle in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
Figure 3.  $ \beta $ = 0.6, $ \tau $ = 0.1, System (2)-(3) fail to form a flock
[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[10]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (49)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]