February  2021, 26(2): 1223-1241. doi: 10.3934/dcdsb.2020251

Collision-free flocking for a time-delay system

College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China

* Corresponding author: Xiao Wang

Received  February 2020 Revised  July 2020 Published  August 2020

Fund Project: This work was supported by the NSFC (Grant No.11401577 and No.11671011)

The co-existence of collision avoidance and time-asymptotic flocking of multi-particle systems with measurement delay is considered. Based on Lyapunov stability theory and some auxiliary differential inequalities, a delay-related sufficient condition is established for this system to admit a time-asymptotic flocking and collision avoidance. The estimated range of the delay is given, which may affect the flocking performance of the system. An analytical expression was proposed to quantitatively analyze the upper bound of this delay. Under the flocking conditions, the exponential decay of the relative velocity of any two particles in the system is characterized. Particularly, the collision-free flocking conditions are also given for the case without delay. This work verifies that both collision avoidance and flocking behaviors can be achieved simultaneously in a delay system.

Citation: Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251
References:
[1]

J. A. CarrilloY.-P. ChoiP. B. Mucha and et al, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[2]

M. L. ChenX. LiX. Wang and et al., Flocking and collision avoidance of a Cucker-Smale type system with singular weights, J. Appl. Anal. Comput., 10 (2019), 140-152.   Google Scholar

[3]

M. Chen and X. Wang, Flocking dynamics for multi-agent system with measurement delay, Math. Comput. Simulat., 171 (2020), 187-200.  doi: 10.1016/j.matcom.2019.09.015.  Google Scholar

[4]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[5]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[6]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789–804. arXiv: 1902.03819. doi: 10.3934/nhm.2019032.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

R. ErbanJ. Haŝkovec and Y. Sun, A Cucker–Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Internat. J. Control, 77 (2004), 1567-1579.  doi: 10.1080/00207170412331330021.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Upper Saddle River, NJ: Prentice hall, 2002. Google Scholar

[14] J. C. Kuang, Common Inequalities, Shandong Science and Technology Press, 2004.   Google Scholar
[15]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[16]

J. ParkH. J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[17]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.   Google Scholar

[18]

Z. T. Qiu, General theory of delayed functional differential equations, Journal of National University of Defense Technology, 04 (1982), 132-143.   Google Scholar

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

show all references

References:
[1]

J. A. CarrilloY.-P. ChoiP. B. Mucha and et al, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[2]

M. L. ChenX. LiX. Wang and et al., Flocking and collision avoidance of a Cucker-Smale type system with singular weights, J. Appl. Anal. Comput., 10 (2019), 140-152.   Google Scholar

[3]

M. Chen and X. Wang, Flocking dynamics for multi-agent system with measurement delay, Math. Comput. Simulat., 171 (2020), 187-200.  doi: 10.1016/j.matcom.2019.09.015.  Google Scholar

[4]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[5]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[6]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789–804. arXiv: 1902.03819. doi: 10.3934/nhm.2019032.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

R. ErbanJ. Haŝkovec and Y. Sun, A Cucker–Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Internat. J. Control, 77 (2004), 1567-1579.  doi: 10.1080/00207170412331330021.  Google Scholar

[12]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[13]

H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Upper Saddle River, NJ: Prentice hall, 2002. Google Scholar

[14] J. C. Kuang, Common Inequalities, Shandong Science and Technology Press, 2004.   Google Scholar
[15]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[16]

J. ParkH. J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[17]

C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.   Google Scholar

[18]

Z. T. Qiu, General theory of delayed functional differential equations, Journal of National University of Defense Technology, 04 (1982), 132-143.   Google Scholar

[19]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

Figure 1.  $ \beta $ = 0.5, $ \tau $ = 0.01, the relative position of any two particles in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
Figure 2.  $ \beta $ = 0.6, $ \tau $ = 0.01, the relative position of any two particle in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
Figure 3.  $ \beta $ = 0.6, $ \tau $ = 0.1, System (2)-(3) fail to form a flock
[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[3]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[8]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[9]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[10]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[11]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[12]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[14]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[15]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[20]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (102)
  • HTML views (177)
  • Cited by (0)

Other articles
by authors

[Back to Top]