# American Institute of Mathematical Sciences

• Previous Article
Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory
• DCDS-B Home
• This Issue
• Next Article
Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows

## Collision-free flocking for a time-delay system

 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China

* Corresponding author: Xiao Wang

Received  February 2020 Revised  July 2020 Published  August 2020

Fund Project: This work was supported by the NSFC (Grant No.11401577 and No.11671011)

The co-existence of collision avoidance and time-asymptotic flocking of multi-particle systems with measurement delay is considered. Based on Lyapunov stability theory and some auxiliary differential inequalities, a delay-related sufficient condition is established for this system to admit a time-asymptotic flocking and collision avoidance. The estimated range of the delay is given, which may affect the flocking performance of the system. An analytical expression was proposed to quantitatively analyze the upper bound of this delay. Under the flocking conditions, the exponential decay of the relative velocity of any two particles in the system is characterized. Particularly, the collision-free flocking conditions are also given for the case without delay. This work verifies that both collision avoidance and flocking behaviors can be achieved simultaneously in a delay system.

Citation: Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020251
##### References:

show all references

##### References:
$\beta$ = 0.5, $\tau$ = 0.01, the relative position of any two particles in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
$\beta$ = 0.6, $\tau$ = 0.01, the relative position of any two particle in System (2)-(3) is always bounded, and the velocity will asymptotically converge, i.e., the emergence of flocking
$\beta$ = 0.6, $\tau$ = 0.1, System (2)-(3) fail to form a flock
 [1] Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 [2] Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437 [3] Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic & Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022 [4] Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443 [5] Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020218 [6] Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 [7] Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic & Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 [8] Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461 [9] Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751 [10] Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497 [11] Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007 [12] Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005 [13] Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861 [14] Xiaobin Mao, Hua Dai. Partial eigenvalue assignment with time delay robustness. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 207-221. doi: 10.3934/naco.2013.3.207 [15] Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091 [16] Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385 [17] Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032 [18] Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259 [19] John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 [20] Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables