
-
Previous Article
A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations
- DCDS-B Home
- This Issue
-
Next Article
Strong convergence rates for markovian representations of fractional processes
Flocking and line-shaped spatial configuration to delayed Cucker-Smale models
Department of Mathematics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, China |
As we known, it is popular for a designed system to achieve a prescribed performance, which have remarkable capability to regulate the flow of information from distinct and independent components. Also, it is not well understand, in both theories and applications, how self propelled agents use only limited environmental information and simple rules to organize into an ordered motion. In this paper, we focus on analysis the flocking behaviour and the line-shaped pattern for collective motion involving time delay effects. Firstly, we work on a delayed Cucker-Smale-type system involving a general communication weight and a constant delay $ \tau>0 $ for modelling collective motion. In a result, by constructing a new Lyapunov functional approach, combining with two delayed differential inequalities established by $ L^2 $-analysis, we show that the flocking occurs for the general communication weight when $ \tau $ is sufficiently small. Furthermore, to achieve the prescribed performance, we introduce the line-shaped inner force term into the delayed collective system, and analytically show that there is a flocking pattern with an asymptotic flocking velocity and line-shaped pattern. All results are novel and can be illustrated by numerical simulations using some concrete influence functions. Also, our results significantly extend some known theorems in the literature.
References:
[1] |
N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2017. |
[2] |
N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 2, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2019.
doi: 10.1007/978-3-030-20297-2. |
[3] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[4] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[5] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko,
Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287. |
[6] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[7] |
Y.-P. Choi, S. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, In Active Particles, Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, (2017), 299–331. |
[8] |
Y.-P. Choi and Z. Li,
Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018. |
[9] |
Y.-P. Choi and C. Pignotti,
Emergent behavior of Cucker-Smale models with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.
doi: 10.3934/nhm.2019032. |
[10] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[11] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[12] |
F. Cucker and J. Dong,
A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.
doi: 10.1109/TAC.2011.2107113. |
[13] |
F. Cucker and J.-G. Dong,
On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.
doi: 10.1142/S0218202509003851. |
[14] |
J. Dong, S. -Y. Ha, D. Kim and J. Kim,
Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.
doi: 10.1016/j.jde.2018.08.034. |
[15] |
J. Dong, S.-Y. Ha, D. Kim and J. Kim,
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.
doi: 10.3934/dcdsb.2019072. |
[16] |
R. Erban, J. Haskovec and Y. Sun,
On Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[17] |
S.-Y. Ha and J. Liu,
A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[18] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[19] |
S.-Y. Ha and M. Slemrod,
Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.
doi: 10.1007/s10884-009-9142-9. |
[20] |
S. -Y. Ha, J. Kim, J. Park and X. Zhang,
Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365.
doi: 10.1007/s00205-018-1281-x. |
[21] |
J. Haskovec and I. Markou, Delay Cucker-Smale model with and without noise revised, preprint, arXiv: 1810.01084v2. Google Scholar |
[22] |
L. Li, L. Huang and J. Wu,
Cascade flocking with free-will, Discrete Contin. Dyn. Syst. Ser.B, 21 (2016), 497-522.
doi: 10.3934/dcdsb.2016.21.497. |
[23] |
L. Li, W. Wang, L. Huang and J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404.
doi: 10.1016/j.jmaa.2019.123404. |
[24] |
X. Li, Y. Liu and J. Wu,
Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean. Math. Soc., 53 (2016), 1327-1339.
doi: 10.4134/BKMS.b150629. |
[25] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[26] |
Z. Li,
Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683-3702.
doi: 10.3934/dcds.2014.34.3683. |
[27] |
H. Liu, X. Wang, Y. Liu and X. Li,
On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear. Sci. Numer. Simul., 75 (2019), 280-301.
doi: 10.1016/j.cnsns.2019.04.006. |
[28] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[29] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[30] |
P. Mucha and J. Peszek,
The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weakatomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.
doi: 10.1007/s00205-017-1160-x. |
[31] |
C. Pignotti and E. Trelat,
Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.
doi: 10.4310/CMS.2018.v16.n8.a1. |
[32] |
C. Pignotti and I. Vallejo,
Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070. |
[33] |
C. Pignotti and I. Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser. 32, Springer, Cham, 2019. |
[34] |
L. Ru and X. Xue,
Multi-cluster flocking behavior of the hierarchical Cucker-Smale model, J. Franklin Inst., 354 (2017), 2371-2392.
doi: 10.1016/j.jfranklin.2016.12.018. |
[35] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254. |
[36] |
T. Vicsek and A. Zafeiris,
Collective motion, Physics Reports, 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[37] |
X. Wang, L. Wang and J. Wu,
Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.
doi: 10.1016/j.cnsns.2018.10.017. |
show all references
References:
[1] |
N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2017. |
[2] |
N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 2, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2019.
doi: 10.1007/978-3-030-20297-2. |
[3] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[4] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[5] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko,
Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287. |
[6] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[7] |
Y.-P. Choi, S. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, In Active Particles, Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, (2017), 299–331. |
[8] |
Y.-P. Choi and Z. Li,
Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018. |
[9] |
Y.-P. Choi and C. Pignotti,
Emergent behavior of Cucker-Smale models with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.
doi: 10.3934/nhm.2019032. |
[10] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[11] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[12] |
F. Cucker and J. Dong,
A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.
doi: 10.1109/TAC.2011.2107113. |
[13] |
F. Cucker and J.-G. Dong,
On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.
doi: 10.1142/S0218202509003851. |
[14] |
J. Dong, S. -Y. Ha, D. Kim and J. Kim,
Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.
doi: 10.1016/j.jde.2018.08.034. |
[15] |
J. Dong, S.-Y. Ha, D. Kim and J. Kim,
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.
doi: 10.3934/dcdsb.2019072. |
[16] |
R. Erban, J. Haskovec and Y. Sun,
On Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[17] |
S.-Y. Ha and J. Liu,
A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[18] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[19] |
S.-Y. Ha and M. Slemrod,
Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.
doi: 10.1007/s10884-009-9142-9. |
[20] |
S. -Y. Ha, J. Kim, J. Park and X. Zhang,
Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365.
doi: 10.1007/s00205-018-1281-x. |
[21] |
J. Haskovec and I. Markou, Delay Cucker-Smale model with and without noise revised, preprint, arXiv: 1810.01084v2. Google Scholar |
[22] |
L. Li, L. Huang and J. Wu,
Cascade flocking with free-will, Discrete Contin. Dyn. Syst. Ser.B, 21 (2016), 497-522.
doi: 10.3934/dcdsb.2016.21.497. |
[23] |
L. Li, W. Wang, L. Huang and J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404.
doi: 10.1016/j.jmaa.2019.123404. |
[24] |
X. Li, Y. Liu and J. Wu,
Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean. Math. Soc., 53 (2016), 1327-1339.
doi: 10.4134/BKMS.b150629. |
[25] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[26] |
Z. Li,
Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683-3702.
doi: 10.3934/dcds.2014.34.3683. |
[27] |
H. Liu, X. Wang, Y. Liu and X. Li,
On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear. Sci. Numer. Simul., 75 (2019), 280-301.
doi: 10.1016/j.cnsns.2019.04.006. |
[28] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[29] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[30] |
P. Mucha and J. Peszek,
The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weakatomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.
doi: 10.1007/s00205-017-1160-x. |
[31] |
C. Pignotti and E. Trelat,
Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.
doi: 10.4310/CMS.2018.v16.n8.a1. |
[32] |
C. Pignotti and I. Vallejo,
Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070. |
[33] |
C. Pignotti and I. Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser. 32, Springer, Cham, 2019. |
[34] |
L. Ru and X. Xue,
Multi-cluster flocking behavior of the hierarchical Cucker-Smale model, J. Franklin Inst., 354 (2017), 2371-2392.
doi: 10.1016/j.jfranklin.2016.12.018. |
[35] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254. |
[36] |
T. Vicsek and A. Zafeiris,
Collective motion, Physics Reports, 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[37] |
X. Wang, L. Wang and J. Wu,
Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.
doi: 10.1016/j.cnsns.2018.10.017. |





[1] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[2] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[3] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[4] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[5] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[6] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[7] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[8] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[9] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[10] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[11] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[12] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[13] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[14] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[15] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[16] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[17] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[18] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[19] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[20] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]