• Previous Article
    A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations
  • DCDS-B Home
  • This Issue
  • Next Article
    A blow-up result for the chemotaxis system with nonlinear signal production and logistic source
doi: 10.3934/dcdsb.2020253

Flocking and line-shaped spatial configuration to delayed Cucker-Smale models

Department of Mathematics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, China

* Corresponding author: Yicheng Liu

Received  July 2019 Revised  February 2020 Published  August 2020

Fund Project: This work was supported by the NSFC (11701267;11671011;11801562) and Hunan Natural Science Excellent Youth Fund (2020JJ3029)

As we known, it is popular for a designed system to achieve a prescribed performance, which have remarkable capability to regulate the flow of information from distinct and independent components. Also, it is not well understand, in both theories and applications, how self propelled agents use only limited environmental information and simple rules to organize into an ordered motion. In this paper, we focus on analysis the flocking behaviour and the line-shaped pattern for collective motion involving time delay effects. Firstly, we work on a delayed Cucker-Smale-type system involving a general communication weight and a constant delay $ \tau>0 $ for modelling collective motion. In a result, by constructing a new Lyapunov functional approach, combining with two delayed differential inequalities established by $ L^2 $-analysis, we show that the flocking occurs for the general communication weight when $ \tau $ is sufficiently small. Furthermore, to achieve the prescribed performance, we introduce the line-shaped inner force term into the delayed collective system, and analytically show that there is a flocking pattern with an asymptotic flocking velocity and line-shaped pattern. All results are novel and can be illustrated by numerical simulations using some concrete influence functions. Also, our results significantly extend some known theorems in the literature.

Citation: Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020253
References:
[1]

N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2017.  Google Scholar

[2]

N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 2, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-20297-2.  Google Scholar

[3]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[4]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[5]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[6]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[7]

Y.-P. Choi, S. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, In Active Particles, Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, (2017), 299–331.  Google Scholar

[8]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[9]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale models with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.  doi: 10.3934/nhm.2019032.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[12]

F. Cucker and J. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[13]

F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.  doi: 10.1142/S0218202509003851.  Google Scholar

[14]

J. DongS. -Y. HaD. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.  doi: 10.1016/j.jde.2018.08.034.  Google Scholar

[15]

J. DongS.-Y. HaD. Kim and J. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.  Google Scholar

[16]

R. ErbanJ. Haskovec and Y. Sun, On Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[17]

S.-Y. Ha and J. Liu, A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[18]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[20]

S. -Y. HaJ. KimJ. Park and X. Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365.  doi: 10.1007/s00205-018-1281-x.  Google Scholar

[21]

J. Haskovec and I. Markou, Delay Cucker-Smale model with and without noise revised, preprint, arXiv: 1810.01084v2. Google Scholar

[22]

L. LiL. Huang and J. Wu, Cascade flocking with free-will, Discrete Contin. Dyn. Syst. Ser.B, 21 (2016), 497-522.  doi: 10.3934/dcdsb.2016.21.497.  Google Scholar

[23]

L. Li, W. Wang, L. Huang and J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404. doi: 10.1016/j.jmaa.2019.123404.  Google Scholar

[24]

X. LiY. Liu and J. Wu, Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean. Math. Soc., 53 (2016), 1327-1339.  doi: 10.4134/BKMS.b150629.  Google Scholar

[25]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[26]

Z. Li, Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683-3702.  doi: 10.3934/dcds.2014.34.3683.  Google Scholar

[27]

H. LiuX. WangY. Liu and X. Li, On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear. Sci. Numer. Simul., 75 (2019), 280-301.  doi: 10.1016/j.cnsns.2019.04.006.  Google Scholar

[28]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[29]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[30]

P. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weakatomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.  Google Scholar

[31]

C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.  Google Scholar

[32]

C. Pignotti and I. Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[33]

C. Pignotti and I. Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser. 32, Springer, Cham, 2019.  Google Scholar

[34]

L. Ru and X. Xue, Multi-cluster flocking behavior of the hierarchical Cucker-Smale model, J. Franklin Inst., 354 (2017), 2371-2392.  doi: 10.1016/j.jfranklin.2016.12.018.  Google Scholar

[35]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[36]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[37]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

show all references

References:
[1]

N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2017.  Google Scholar

[2]

N. Bellomo, P. Degond and E. Tadmor, eds., Active Particles. Vol. 2, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-20297-2.  Google Scholar

[3]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[4]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[5]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[6]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[7]

Y.-P. Choi, S. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, In Active Particles, Vol. 1, Advances in Theory, Models, and Applications, Birkhäuser/Springer, Cham, (2017), 299–331.  Google Scholar

[8]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[9]

Y.-P. Choi and C. Pignotti, Emergent behavior of Cucker-Smale models with normalized weights and distributed time delays, Netw. Heterog. Media, 14 (2019), 789-804.  doi: 10.3934/nhm.2019032.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[12]

F. Cucker and J. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[13]

F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.  doi: 10.1142/S0218202509003851.  Google Scholar

[14]

J. DongS. -Y. HaD. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.  doi: 10.1016/j.jde.2018.08.034.  Google Scholar

[15]

J. DongS.-Y. HaD. Kim and J. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.  Google Scholar

[16]

R. ErbanJ. Haskovec and Y. Sun, On Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[17]

S.-Y. Ha and J. Liu, A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[18]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[20]

S. -Y. HaJ. KimJ. Park and X. Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365.  doi: 10.1007/s00205-018-1281-x.  Google Scholar

[21]

J. Haskovec and I. Markou, Delay Cucker-Smale model with and without noise revised, preprint, arXiv: 1810.01084v2. Google Scholar

[22]

L. LiL. Huang and J. Wu, Cascade flocking with free-will, Discrete Contin. Dyn. Syst. Ser.B, 21 (2016), 497-522.  doi: 10.3934/dcdsb.2016.21.497.  Google Scholar

[23]

L. Li, W. Wang, L. Huang and J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404. doi: 10.1016/j.jmaa.2019.123404.  Google Scholar

[24]

X. LiY. Liu and J. Wu, Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean. Math. Soc., 53 (2016), 1327-1339.  doi: 10.4134/BKMS.b150629.  Google Scholar

[25]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[26]

Z. Li, Effectual leadership in flocks with hierarchy and individual preference, Discrete Contin. Dyn. Syst., 34 (2014), 3683-3702.  doi: 10.3934/dcds.2014.34.3683.  Google Scholar

[27]

H. LiuX. WangY. Liu and X. Li, On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear. Sci. Numer. Simul., 75 (2019), 280-301.  doi: 10.1016/j.cnsns.2019.04.006.  Google Scholar

[28]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[29]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[30]

P. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weakatomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.  Google Scholar

[31]

C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.  Google Scholar

[32]

C. Pignotti and I. Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[33]

C. Pignotti and I. Vallejo, Asymptotic analysis of a Cucker-Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser. 32, Springer, Cham, 2019.  Google Scholar

[34]

L. Ru and X. Xue, Multi-cluster flocking behavior of the hierarchical Cucker-Smale model, J. Franklin Inst., 354 (2017), 2371-2392.  doi: 10.1016/j.jfranklin.2016.12.018.  Google Scholar

[35]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[36]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[37]

X. WangL. Wang and J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80-88.  doi: 10.1016/j.cnsns.2018.10.017.  Google Scholar

Figure 1.  Time-domain behaviors of the state variables $ x_{1}(t) $, $ x_{2}(t) $, $ v_{1}(t) $, $ v_{2}(t) $ in Example 4.1
Figure 2.  Time-domain behaviors of the state variables $ x_{1}(t) $, $ x_{2}(t) $, $ v_{1}(t) $, $ v_{2}(t) $ for the case $ \beta = \frac{1}{2} $ in Example 4.2
Figure 3.  Time-domain behaviors of the state variables $ x_{1}(t) $, $ x_{2}(t) $, $ v_{1}(t) $, $ v_{2}(t) $ for the case $ \beta = 1 $ in Example 4.2
Figure 4.  The first is the initial position of each particle in the system; the second is the population distribution after iteration $ 200 $ ($ 2s $). the third is the population distribution after iteration $ 2000 $ ($ 20s $). The value of each parameter is given as: $ N = 100, \lambda = 2, \tau = 0.2, \psi = \frac{1}{(1+r^2)^{1/3}} $, $ \gamma = 1 $
Figure 5.  The first is the initial position of each particle in the system; the second is the population distribution after iteration $ 2000 $ ($ 20s $); the third is the population distribution after iteration $ 5000 $ ($ 50s $). The value of each parameter is given as: $ N = 100, \lambda = 20, \tau = 0.2, \psi = \frac{1}{(1+r^2)^{1/2}} $, $ \gamma = 1 $
[1]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[2]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic & Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008

[5]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[6]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[7]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[8]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5569-5596. doi: 10.3934/dcdsb.2019072

[9]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020155

[10]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[11]

Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic & Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026

[12]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic & Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[13]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[14]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[15]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[16]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. On the Cucker-Smale ensemble with $ q $-closest neighbors under time-delayed communications. Kinetic & Related Models, 2020, 13 (4) : 653-676. doi: 10.3934/krm.2020022

[17]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[18]

Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks & Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032

[19]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[20]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]