
-
Previous Article
Survival analysis for tumor growth model with stochastic perturbation
- DCDS-B Home
- This Issue
-
Next Article
When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?
Analysis of non-Markovian effects in generalized birth-death models
Key Laboratory of Computational Mathematics, Guangdong Province and School of, Mathematics, Sun Yat-sen University, Guangzhou, 510275, China |
Birth-death processes are a fundamental reaction module for which we can find its prototypes in many scientific fields. For such a kind of module, if all the reaction events are Markovian, the reaction kinetics is simple. However, experimentally observable quantities are in general consequences of a series of reactions, implying that the synthesis of a macromolecule in general involve multiple middle reaction steps with some reactions that would not be specified by experiments. This multistep process can create molecular memory between reaction events, leading to non-Markovian behavior. Based on the theoretical framework established in a recent paper published in [
References:
[1] |
T. Aquino and M. Dentz, Chemical continuous time random walks, Phys. Rev. Lett., 119 (2017), 230601.
doi: 10.1103/PhysRevLett.119.230601. |
[2] |
A. L. Barabasi,
The origin of bursts and heavy tails in human dynamics, Nature, 435 (2005), 207-211.
doi: 10.1038/nature03459. |
[3] |
M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of Hes1 discrete stochastic delay modelling and simulation, PLoS Comput. Biol., 2 (2006), e117. Google Scholar |
[4] |
D. Bratsun, D. Volfson, L. S. Tsimring and J. Hasty,
Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 14593-14598.
doi: 10.1073/pnas.0503858102. |
[5] |
T. Brett and T. Galla, Stochastic processes with distributed delays: Chemical Langevin equation and linear noise approximation, Phys. Rev. Lett., 110 (2013), 250601.
doi: 10.1103/PhysRevLett.110.250601. |
[6] |
A. Corral, Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 92 (2004), 108501.
doi: 10.1103/PhysRevLett.92.108501. |
[7] |
I. De Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Modern Phys., 89 (2017), 015001.
doi: 10.1103/RevModPhys.89.015001. |
[8] |
J. Delvenne, R. Lambiotte and L. E. C. Rocha,
Diffusion on networked systems is a question of time or structure, Nat. Commun., 6 (2015), 1-10.
doi: 10.1038/ncomms8366. |
[9] |
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, John Wiley & Sons, New York, 2008. Google Scholar |
[10] |
C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer-Verlag, Berlin, 2009. |
[11] |
D. T. Gillespie,
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403-434.
doi: 10.1016/0021-9991(76)90041-3. |
[12] |
J. P. Gleeson, K. P. OŚullivan, R. A. Baños and Y. Moreno, Effects of network structure, competition and memory time on social spreading phenomena, Phys. Rev. X, 6 (2016), 021019.
doi: 10.1103/PhysRevX.6.021019. |
[13] |
T. Guérin, O. Bénichou and R. Voituriez, Non-Markovian polymer reaction kinetics, Nat. Chem., 4 (2012), 568-573. Google Scholar |
[14] |
C. V. Harper, B. Finkenstädt, D. J. Woodcock, S. Friedrichsen, S. Semprini, L. Ashall, et al., Dynamic analysis of stochastic transcription cycles, PLoS Biol., 9 (2011), e1000607.
doi: 10.1371/journal.pbio.1000607. |
[15] |
H. W. Hethcote and P. v. d. Driessche,
A SIS epidemic model with variable population size and a delay, J. Math. Biol., 34 (1995), 177-194.
doi: 10.1007/BF00178772. |
[16] |
J. C. Jaeger and G. Newstead, An Introduction to the Laplace Transformation with Engineering Applications, Methuen & Co., Ltd., London, John Wiley & Sons, Inc., New York, NY, 1949. |
[17] |
T. Jia and R. V. Kulkarni, Intrinsic noise in stochastic models of gene expression with molecular memory, Phys. Rev. Lett., 106 (2011), 058102.
doi: 10.1103/PhysRevLett.106.058102. |
[18] |
H. H. Jo, J. I. Perotti, K. Kaski and J. Kertész, Analytically solvable model of spreading dynamics with non-Poissonian processes, Phys. Rev. X, 4 (2014), 011041.
doi: 10.1103/PhysRevX.4.011041. |
[19] |
I. Z. Kiss, G. Röst and Z. Vizi, Generalization of pairwise models to non-Markovian epidemics on networks, Phys. Rev. Lett., 115 (2015), 078701.
doi: 10.1103/PhysRevLett.115.078701. |
[20] |
N. Kumar, A. Singh and R. V. Kulkarni, Transcriptional bursting in gene expression: Analytical results for general stochastic models, PLoS Comput. Biol., 11 (2015), e1004292.
doi: 10.1371/journal.pcbi.1004292. |
[21] |
D. R. Larson,
What do expression dynamics tell us about the mechanism of transcription?, Curr. Opin. Genet. Dev., 21 (2011), 591-599.
doi: 10.1016/j.gde.2011.07.010. |
[22] |
N. Masuda, M. A. Porter and R. Lambiotte,
Random walks and diffusion on networks, Phys. Rep., 716 (2017), 1-58.
doi: 10.1016/j.physrep.2017.07.007. |
[23] |
A. S. Novozhilov, G. P. Karev and E. V. Koonin,
Biological applications of the theory of birth-and-death processes, Briefings in Bioinformatics, 7 (2006), 70-85.
doi: 10.1093/bib/bbk006. |
[24] |
E. Pardoux, Markov Processes and Applications: Algorithms, Networks, Genome and Finance, Vol. 796, John Wiley & Sons, New York, 2008.
doi: 10.1002/9780470721872. |
[25] |
J. Peccoud and B. Ycart,
Markovian modeling of gene product synthesis, Theor. Popul. Biol., 48 (1995), 222-234.
doi: 10.1006/tpbi.1995.1027. |
[26] |
J. M. Pedraza and J. Paulsson,
Effects of molecular memory and bursting on fluctuations in gene expression, Science, 319 (2008), 339-343.
doi: 10.1126/science.1144331. |
[27] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309.
doi: 10.1371/journal.pbio.0040309. |
[28] |
M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman and J. H. Jones, A high-resolution human contact network for infectious disease transmission, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 22020-22025. Google Scholar |
[29] |
I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone and F. Schweitzer,
Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun., 5 (2014), 1-9.
doi: 10.1038/ncomms6024. |
[30] |
A. Schwabe, K. N. Rybakova and F. J. Bruggeman,
Transcription stochasticity of complex gene regulation models, Biophys. J., 103 (2012), 1152-1161.
doi: 10.1016/j.bpj.2012.07.011. |
[31] |
V. Shahrezaei and P. S. Swain,
Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 17256-17261.
doi: 10.1073/pnas.0803850105. |
[32] |
M. Starnini, J. P. Gleeson and M. Boguñá, Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes, Phys. Rev. Lett., 118 (2017), 128301.
doi: 10.1103/PhysRevLett.118.128301. |
[33] |
P. S. Stumpf, R. C. Smith, M. Lenz, A. Schuppert, F. J. Müller, A. Babtie, T. E. Chan, M. P. Stumpf, C. P. Please, S. D. Howison, F. Arai and B. D. MacArthur,
Stem cell differentiation as a non-Markov stochastic process, Cell Syst., 5 (2017), 268-282.
doi: 10.1016/j.cels.2017.08.009. |
[34] |
D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler and F. Naef,
Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474.
doi: 10.1126/science.1198817. |
[35] |
P. Thomas, N. Popović and R. Grima,
Phenotypic switching in gene regulatory networks, Proc. Natl. Acad. Sci. U. S. A., 111 (2014), 6994-6999.
doi: 10.1073/pnas.1400049111. |
[36] |
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 2007. Google Scholar |
[37] |
P. Van Mieghem and R. Van de Bovenkamp, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks, Phys. Rev. Lett., 110 (2013), 108701.
doi: 10.1103/PhysRevLett.110.108701. |
[38] |
J. J. Zhang and T. S. Zhou,
Promoter-mediated transcriptional dynamics, Biophys. J., 106 (2014), 479-488.
doi: 10.1016/j.bpj.2013.12.011. |
[39] |
J. J. Zhang and T. S. Zhou,
Markovian approaches to modeling intracellular reaction processes with molecular memory, Proc. Natl. Acad. Sci. U. S. A., 116 (2019), 23542-23550.
doi: 10.1073/pnas.1913926116. |
[40] |
J. J. Zhang, Q. Nie and T. S. Zhou, A moment-convergence method for stochastic analysis of biochemical reaction networks, J. Chem. Phys., 144 (2016), 194109.
doi: 10.1063/1.4950767. |
show all references
References:
[1] |
T. Aquino and M. Dentz, Chemical continuous time random walks, Phys. Rev. Lett., 119 (2017), 230601.
doi: 10.1103/PhysRevLett.119.230601. |
[2] |
A. L. Barabasi,
The origin of bursts and heavy tails in human dynamics, Nature, 435 (2005), 207-211.
doi: 10.1038/nature03459. |
[3] |
M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of Hes1 discrete stochastic delay modelling and simulation, PLoS Comput. Biol., 2 (2006), e117. Google Scholar |
[4] |
D. Bratsun, D. Volfson, L. S. Tsimring and J. Hasty,
Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 14593-14598.
doi: 10.1073/pnas.0503858102. |
[5] |
T. Brett and T. Galla, Stochastic processes with distributed delays: Chemical Langevin equation and linear noise approximation, Phys. Rev. Lett., 110 (2013), 250601.
doi: 10.1103/PhysRevLett.110.250601. |
[6] |
A. Corral, Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 92 (2004), 108501.
doi: 10.1103/PhysRevLett.92.108501. |
[7] |
I. De Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Modern Phys., 89 (2017), 015001.
doi: 10.1103/RevModPhys.89.015001. |
[8] |
J. Delvenne, R. Lambiotte and L. E. C. Rocha,
Diffusion on networked systems is a question of time or structure, Nat. Commun., 6 (2015), 1-10.
doi: 10.1038/ncomms8366. |
[9] |
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, John Wiley & Sons, New York, 2008. Google Scholar |
[10] |
C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer-Verlag, Berlin, 2009. |
[11] |
D. T. Gillespie,
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403-434.
doi: 10.1016/0021-9991(76)90041-3. |
[12] |
J. P. Gleeson, K. P. OŚullivan, R. A. Baños and Y. Moreno, Effects of network structure, competition and memory time on social spreading phenomena, Phys. Rev. X, 6 (2016), 021019.
doi: 10.1103/PhysRevX.6.021019. |
[13] |
T. Guérin, O. Bénichou and R. Voituriez, Non-Markovian polymer reaction kinetics, Nat. Chem., 4 (2012), 568-573. Google Scholar |
[14] |
C. V. Harper, B. Finkenstädt, D. J. Woodcock, S. Friedrichsen, S. Semprini, L. Ashall, et al., Dynamic analysis of stochastic transcription cycles, PLoS Biol., 9 (2011), e1000607.
doi: 10.1371/journal.pbio.1000607. |
[15] |
H. W. Hethcote and P. v. d. Driessche,
A SIS epidemic model with variable population size and a delay, J. Math. Biol., 34 (1995), 177-194.
doi: 10.1007/BF00178772. |
[16] |
J. C. Jaeger and G. Newstead, An Introduction to the Laplace Transformation with Engineering Applications, Methuen & Co., Ltd., London, John Wiley & Sons, Inc., New York, NY, 1949. |
[17] |
T. Jia and R. V. Kulkarni, Intrinsic noise in stochastic models of gene expression with molecular memory, Phys. Rev. Lett., 106 (2011), 058102.
doi: 10.1103/PhysRevLett.106.058102. |
[18] |
H. H. Jo, J. I. Perotti, K. Kaski and J. Kertész, Analytically solvable model of spreading dynamics with non-Poissonian processes, Phys. Rev. X, 4 (2014), 011041.
doi: 10.1103/PhysRevX.4.011041. |
[19] |
I. Z. Kiss, G. Röst and Z. Vizi, Generalization of pairwise models to non-Markovian epidemics on networks, Phys. Rev. Lett., 115 (2015), 078701.
doi: 10.1103/PhysRevLett.115.078701. |
[20] |
N. Kumar, A. Singh and R. V. Kulkarni, Transcriptional bursting in gene expression: Analytical results for general stochastic models, PLoS Comput. Biol., 11 (2015), e1004292.
doi: 10.1371/journal.pcbi.1004292. |
[21] |
D. R. Larson,
What do expression dynamics tell us about the mechanism of transcription?, Curr. Opin. Genet. Dev., 21 (2011), 591-599.
doi: 10.1016/j.gde.2011.07.010. |
[22] |
N. Masuda, M. A. Porter and R. Lambiotte,
Random walks and diffusion on networks, Phys. Rep., 716 (2017), 1-58.
doi: 10.1016/j.physrep.2017.07.007. |
[23] |
A. S. Novozhilov, G. P. Karev and E. V. Koonin,
Biological applications of the theory of birth-and-death processes, Briefings in Bioinformatics, 7 (2006), 70-85.
doi: 10.1093/bib/bbk006. |
[24] |
E. Pardoux, Markov Processes and Applications: Algorithms, Networks, Genome and Finance, Vol. 796, John Wiley & Sons, New York, 2008.
doi: 10.1002/9780470721872. |
[25] |
J. Peccoud and B. Ycart,
Markovian modeling of gene product synthesis, Theor. Popul. Biol., 48 (1995), 222-234.
doi: 10.1006/tpbi.1995.1027. |
[26] |
J. M. Pedraza and J. Paulsson,
Effects of molecular memory and bursting on fluctuations in gene expression, Science, 319 (2008), 339-343.
doi: 10.1126/science.1144331. |
[27] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309.
doi: 10.1371/journal.pbio.0040309. |
[28] |
M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman and J. H. Jones, A high-resolution human contact network for infectious disease transmission, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 22020-22025. Google Scholar |
[29] |
I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone and F. Schweitzer,
Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun., 5 (2014), 1-9.
doi: 10.1038/ncomms6024. |
[30] |
A. Schwabe, K. N. Rybakova and F. J. Bruggeman,
Transcription stochasticity of complex gene regulation models, Biophys. J., 103 (2012), 1152-1161.
doi: 10.1016/j.bpj.2012.07.011. |
[31] |
V. Shahrezaei and P. S. Swain,
Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 17256-17261.
doi: 10.1073/pnas.0803850105. |
[32] |
M. Starnini, J. P. Gleeson and M. Boguñá, Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes, Phys. Rev. Lett., 118 (2017), 128301.
doi: 10.1103/PhysRevLett.118.128301. |
[33] |
P. S. Stumpf, R. C. Smith, M. Lenz, A. Schuppert, F. J. Müller, A. Babtie, T. E. Chan, M. P. Stumpf, C. P. Please, S. D. Howison, F. Arai and B. D. MacArthur,
Stem cell differentiation as a non-Markov stochastic process, Cell Syst., 5 (2017), 268-282.
doi: 10.1016/j.cels.2017.08.009. |
[34] |
D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler and F. Naef,
Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474.
doi: 10.1126/science.1198817. |
[35] |
P. Thomas, N. Popović and R. Grima,
Phenotypic switching in gene regulatory networks, Proc. Natl. Acad. Sci. U. S. A., 111 (2014), 6994-6999.
doi: 10.1073/pnas.1400049111. |
[36] |
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 2007. Google Scholar |
[37] |
P. Van Mieghem and R. Van de Bovenkamp, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks, Phys. Rev. Lett., 110 (2013), 108701.
doi: 10.1103/PhysRevLett.110.108701. |
[38] |
J. J. Zhang and T. S. Zhou,
Promoter-mediated transcriptional dynamics, Biophys. J., 106 (2014), 479-488.
doi: 10.1016/j.bpj.2013.12.011. |
[39] |
J. J. Zhang and T. S. Zhou,
Markovian approaches to modeling intracellular reaction processes with molecular memory, Proc. Natl. Acad. Sci. U. S. A., 116 (2019), 23542-23550.
doi: 10.1073/pnas.1913926116. |
[40] |
J. J. Zhang, Q. Nie and T. S. Zhou, A moment-convergence method for stochastic analysis of biochemical reaction networks, J. Chem. Phys., 144 (2016), 194109.
doi: 10.1063/1.4950767. |




[1] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[2] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[3] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[4] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[5] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[6] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[7] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[10] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[11] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[14] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[15] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[16] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[19] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[20] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]