• Previous Article
    Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances
  • DCDS-B Home
  • This Issue
  • Next Article
    Chaotic dynamics in a simple predator-prey model with discrete delay
doi: 10.3934/dcdsb.2020255

The coupled 1:2 resonance in a symmetric case and parametric amplification model

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

* Corresponding author: Reza Mazrooei-Sebdani

Received  November 2019 Revised  June 2020 Published  August 2020

This paper deals with the coupled Hamiltonian $ 1 $:$ 2 $ resonance, i.e. the Hamiltonian $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. This resonance is of the first order. We isolate several integrable cases. Our main focus is on two models. In the first part of the paper, we present a discrete symmetric normal form truncated to order three and we compute the relative equilibria for its corresponding system. In the second part, the paper is devoted to the study of the Hamiltonian describing the four-wave mixing (FWM) model. In addition to the Hamiltonian, the corresponding system possesses three more independent integrals. We use these integrals to obtain estimates for the phase space and total energy. Further, we compute the relative equilibria of the FWM system for the $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. Finally, we carry out some numerical experiments for the detuned system.

Citation: Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020255
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006.  Google Scholar

[2]

H. W. BroerG. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9.  Google Scholar

[3]

H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8.  Google Scholar

[4]

R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4.  Google Scholar

[5]

G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838.   Google Scholar

[6]

O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4.  Google Scholar

[7]

C. De AngelisM. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774.  Google Scholar

[8]

J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649.  Google Scholar

[9]

J. EgeaS. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5.  Google Scholar

[10]

D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571.  Google Scholar

[11]

G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2.  Google Scholar

[12]

H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. Google Scholar

[13]

H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. Google Scholar

[14]

G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010.  Google Scholar

[15]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265.  Google Scholar

[16]

S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503.  Google Scholar

[17]

H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906.  Google Scholar

[18]

J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. Google Scholar

[19]

A. A. RedyukA. E. BednyakovaS. B. MedvedevM. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231.   Google Scholar

[20]

D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011.  Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007.  Google Scholar

[22]

S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986.  Google Scholar

[23]

E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817.  Google Scholar

[24]

E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. Google Scholar

[25]

E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067.  Google Scholar

[26]

F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5.  Google Scholar

[27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013.   Google Scholar
[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.  Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006.  Google Scholar

[2]

H. W. BroerG. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9.  Google Scholar

[3]

H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8.  Google Scholar

[4]

R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4.  Google Scholar

[5]

G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838.   Google Scholar

[6]

O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4.  Google Scholar

[7]

C. De AngelisM. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774.  Google Scholar

[8]

J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649.  Google Scholar

[9]

J. EgeaS. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5.  Google Scholar

[10]

D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571.  Google Scholar

[11]

G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2.  Google Scholar

[12]

H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. Google Scholar

[13]

H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. Google Scholar

[14]

G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010.  Google Scholar

[15]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265.  Google Scholar

[16]

S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503.  Google Scholar

[17]

H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906.  Google Scholar

[18]

J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. Google Scholar

[19]

A. A. RedyukA. E. BednyakovaS. B. MedvedevM. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231.   Google Scholar

[20]

D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011.  Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007.  Google Scholar

[22]

S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986.  Google Scholar

[23]

E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817.  Google Scholar

[24]

E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. Google Scholar

[25]

E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067.  Google Scholar

[26]

F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5.  Google Scholar

[27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013.   Google Scholar
[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.  Google Scholar

Figure 1.  Sketch of the FWM model where a photon at $ \omega_1 $ and $ \omega_4 $ is annihilated while a photon at $ \omega_2 $ and $ \omega_3 $ is created
Figure 2.  Changes of $ \tilde{H} $ respect to initial conditions
Figure 3.  Changes of $ \tilde{H} $ respect to distance
Figure 4.  $ \pi_j(T) $ for $ j = 1,k_ge 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $ respect to $ T $
Figure 5.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $
Figure 6.  $ (\pi_1(T),\pi_j(T)) $ for all $ j = 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $
Figure 7.  Changes of $ \tilde{H} $ respect to $ \pi_1(T) $
Figure 8.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1+\frac{1}{8},k_ge \nu_2 = 2+\frac{1}{2},k_ge \nu_3 = 1+\frac{1}{8},k_ge \nu_4 = 2+\frac{1}{2} $ and $ \eta_1 = \eta_2 = \frac{3}{2}(\frac{\nu_2-2\nu_3}{9\gamma}) = \frac{1}{24} $, $ \eta = \eta_1+\frac{1}{3}\eta_2 = \frac{1}{18} $
Figure 9.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.1118423612,k_ge \eta_1 = 0.07710541672,k_ge \eta_2 = 0.1042108334 $
Figure 10.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.06174877145,k_ge \eta_1 = \frac{1}{20},k_ge \eta_2 = \frac{1}{40} $
Figure 11.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = \frac{7}{160},k_ge \eta_1 = \frac{1}{60},k_ge \eta_2 = \frac{1}{20} $
Table 1.  First order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $
$ 1:2:3:4 $ $ 1:2:3:5 $ $ 1:2:3:6 $ $ 1:2:3:7 $ $ 1:2:3:8 $ $ 1:2:3:9 $ $ 1:2:4:5 $
$ 1:2:4:6 $ $ 1:2:4:7 $ $ 1:2:4:8 $ $ 1:2:4:9 $ $ 1:2:5:6 $ $ 1:2:5:7 $ $ 1:2:6:7 $
$ 1:2:6:8 $ $ 1:2:7:8 $ $ 1:2:7:9 $ $ 1:2:8:9 $ $ 1:3:4:5 $ $ 1:3:4:6 $ $ 1:3:4:7 $
$ 1:3:4:8 $ $ 1:3:5:6 $ $ 1:3:6:7 $ $ 1:3:6:9 $ $ 1:4:5:6 $ $ 1:4:5:8 $ $ 1:4:5:9 $
$ 1:4:7:8 $ $ 1:4:8:9 $ $ 1:5:6:7 $ $ 1:6:7:8 $ $ 1:7:8:9 $ $ 1:2:2:3 $ $ 1:2:2:4 $
$ 1:2:2:5 $ $ 1:2:2:6 $ $ 1:2:2:7 $ $ 1:2:2:8 $ $ 1:2:2:9 $ $ 1:3:3:2 $ $ 1:3:3:4 $
$ 1:3:3:6 $ $ 1:4:4:2 $ $ 1:4:4:3 $ $ 1:4:4:5 $ $ 1:4:4:8 $ $ 1:5:5:4 $ $ 1:5:5:6 $
$ 1:6:6:3 $ $ 1:6:6:5 $ $ 1:6:6:7 $ $ 1:7:7:6 $ $ 1:7:7:8 $ $ 1:8:8:4 $ $ 1:8:8:7 $
$ 1:8:8:9 $ $ 1:9:9:8 $ $ 1:2:2:2 $ $ 1:1:2:3 $ $ 1:1:2:4 $ $ 1:1:2:5 $ $ 1:1:2:6 $
$ 1:1:2:7 $ $ 1:1:2:8 $ $ 1:1:2:9 $ $ 1:1:3:4 $ $ 1:1:4:5 $ $ 1:1:5:6 $ $ 1:1:6:7 $
$ 1:1:7:8 $ $ 1:1:8:9 $ $ 1:2:1:2 $ $ 1:1:1:2 $ $ 2:3:4:5 $ $ 2:3:4:6 $ $ 2:3:4:7 $
$ 2:3:4:8 $ $ 2:3:5:6 $ $ 2:3:5:7 $ $ 2:3:5:8 $ $ 2:3:6:8 $ $ 2:3:6:9 $ $ 2:4:5:6 $
$ 2:4:5:7 $ $ 2:4:5:8 $ $ 2:4:5:9 $ $ 2:4:6:7 $ $ 2:4:6:9 $ $ 2:4:7:8 $ $ 2:4:7:9 $
$ 2:4:8:9 $ $ 2:5:7:9 $ $ 2:3:3:5 $ $ 2:3:3:6 $ $ 2:4:4:3 $ $ 2:4:4:5 $ $ 2:4:4:7 $
$ 2:4:4:9 $ $ 2:5:5:3 $ $ 2:5:5:7 $ $ 2:6:6:3 $ $ 2:7:7:5 $ $ 2:7:7:9 $ $ 2:2:3:4 $
$ 2:2:3:5 $ $ 2:2:4:5 $ $ 2:2:4:7 $ $ 2:2:4:9 $ $ 2:2:5:7 $ $ 2:2:7:9 $ $ 3:4:6:7 $
$ 3:4:6:8 $ $ 3:4:6:9 $ $ 3:4:7:8 $ $ 3:5:6:8 $ $ 3:5:6:9 $ $ 3:6:7:9 $ $ 3:6:8:9 $
$ 3:4:4:7 $ $ 3:4:4:8 $ $ 3:5:5:8 $ $ 3:6:6:7 $ $ 3:6:6:8 $ $ 3:3:4:6 $ $ 3:3:4:7 $
$ 3:3:5:6 $ $ 3:3:5:8 $ $ 3:3:6:7 $ $ 3:3:6:8 $ $ 4:5:8:9 $ $ 4:5:5:9 $ $ 4:8:8:9 $
$ 4:4:5:8 $ $ 4:4:5:9 $ $ 4:4:7:8 $ $ 4:4:8:9 $
$ 1:2:3:4 $ $ 1:2:3:5 $ $ 1:2:3:6 $ $ 1:2:3:7 $ $ 1:2:3:8 $ $ 1:2:3:9 $ $ 1:2:4:5 $
$ 1:2:4:6 $ $ 1:2:4:7 $ $ 1:2:4:8 $ $ 1:2:4:9 $ $ 1:2:5:6 $ $ 1:2:5:7 $ $ 1:2:6:7 $
$ 1:2:6:8 $ $ 1:2:7:8 $ $ 1:2:7:9 $ $ 1:2:8:9 $ $ 1:3:4:5 $ $ 1:3:4:6 $ $ 1:3:4:7 $
$ 1:3:4:8 $ $ 1:3:5:6 $ $ 1:3:6:7 $ $ 1:3:6:9 $ $ 1:4:5:6 $ $ 1:4:5:8 $ $ 1:4:5:9 $
$ 1:4:7:8 $ $ 1:4:8:9 $ $ 1:5:6:7 $ $ 1:6:7:8 $ $ 1:7:8:9 $ $ 1:2:2:3 $ $ 1:2:2:4 $
$ 1:2:2:5 $ $ 1:2:2:6 $ $ 1:2:2:7 $ $ 1:2:2:8 $ $ 1:2:2:9 $ $ 1:3:3:2 $ $ 1:3:3:4 $
$ 1:3:3:6 $ $ 1:4:4:2 $ $ 1:4:4:3 $ $ 1:4:4:5 $ $ 1:4:4:8 $ $ 1:5:5:4 $ $ 1:5:5:6 $
$ 1:6:6:3 $ $ 1:6:6:5 $ $ 1:6:6:7 $ $ 1:7:7:6 $ $ 1:7:7:8 $ $ 1:8:8:4 $ $ 1:8:8:7 $
$ 1:8:8:9 $ $ 1:9:9:8 $ $ 1:2:2:2 $ $ 1:1:2:3 $ $ 1:1:2:4 $ $ 1:1:2:5 $ $ 1:1:2:6 $
$ 1:1:2:7 $ $ 1:1:2:8 $ $ 1:1:2:9 $ $ 1:1:3:4 $ $ 1:1:4:5 $ $ 1:1:5:6 $ $ 1:1:6:7 $
$ 1:1:7:8 $ $ 1:1:8:9 $ $ 1:2:1:2 $ $ 1:1:1:2 $ $ 2:3:4:5 $ $ 2:3:4:6 $ $ 2:3:4:7 $
$ 2:3:4:8 $ $ 2:3:5:6 $ $ 2:3:5:7 $ $ 2:3:5:8 $ $ 2:3:6:8 $ $ 2:3:6:9 $ $ 2:4:5:6 $
$ 2:4:5:7 $ $ 2:4:5:8 $ $ 2:4:5:9 $ $ 2:4:6:7 $ $ 2:4:6:9 $ $ 2:4:7:8 $ $ 2:4:7:9 $
$ 2:4:8:9 $ $ 2:5:7:9 $ $ 2:3:3:5 $ $ 2:3:3:6 $ $ 2:4:4:3 $ $ 2:4:4:5 $ $ 2:4:4:7 $
$ 2:4:4:9 $ $ 2:5:5:3 $ $ 2:5:5:7 $ $ 2:6:6:3 $ $ 2:7:7:5 $ $ 2:7:7:9 $ $ 2:2:3:4 $
$ 2:2:3:5 $ $ 2:2:4:5 $ $ 2:2:4:7 $ $ 2:2:4:9 $ $ 2:2:5:7 $ $ 2:2:7:9 $ $ 3:4:6:7 $
$ 3:4:6:8 $ $ 3:4:6:9 $ $ 3:4:7:8 $ $ 3:5:6:8 $ $ 3:5:6:9 $ $ 3:6:7:9 $ $ 3:6:8:9 $
$ 3:4:4:7 $ $ 3:4:4:8 $ $ 3:5:5:8 $ $ 3:6:6:7 $ $ 3:6:6:8 $ $ 3:3:4:6 $ $ 3:3:4:7 $
$ 3:3:5:6 $ $ 3:3:5:8 $ $ 3:3:6:7 $ $ 3:3:6:8 $ $ 4:5:8:9 $ $ 4:5:5:9 $ $ 4:8:8:9 $
$ 4:4:5:8 $ $ 4:4:5:9 $ $ 4:4:7:8 $ $ 4:4:8:9 $
Table 2.  Second order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $
$ 1:2:5:8 $ $ 1:2:5:9 $ $ 1:3:5:7 $ $ 1:3:5:9 $ $ 1:3:7:9 $ $ 1:4:5:7 $ $ 1:4:6:7 $
$ 1:4:6:8 $ $ 1:4:6:9 $ $ 1:4:7:9 $ $ 1:5:7:9 $ $ 1:3:3:5 $ $ 1:3:3:7 $ $ 1:4:4:6 $
$ 1:4:4:7 $ $ 1:4:4:9 $ $ 1:5:5:2 $ $ 1:5:5:3 $ $ 1:5:5:7 $ $ 1:5:5:9 $ $ 1:6:6:4 $
$ 1:6:6:8 $ $ 1:7:7:3 $ $ 1:7:7:4 $ $ 1:7:7:5 $ $ 1:7:7:9 $ $ 1:8:8:6 $ $ 1:9:9:4 $
$ 1:9:9:5 $ $ 1:9:9:7 $ $ 1:3:3:3 $ $ 1:4:4:4 $ $ 1:5:5:5 $ $ 1:6:6:6 $ $ 1:7:7:7 $
$ 1:8:8:8 $ $ 1:9:9:9 $ $ 1:1:3:5 $ $ 1:1:3:6 $ $ 1:1:3:7 $ $ 1:1:3:8 $ $ 1:1:3:9 $
$ 1:1:4:6 $ $ 1:1:4:7 $ $ 1:1:4:9 $ $ 1:1:5:7 $ $ 1:1:5:9 $ $ 1:1:6:8 $ $ 1:1:7:9 $
$ 1:3:1:3 $ $ 1:4:1:4 $ $ 1:5:1:5 $ $ 1:6:1:6 $ $ 1:7:1:7 $ $ 1:8:1:8 $ $ 1:9:1:9 $
$ 1:1:1:3 $ $ 1:1:1:4 $ $ 1:1:1:5 $ $ 1:1:1:6 $ $ 1:1:1:7 $ $ 1:1:1:8 $ $ 1:1:1:9 $
$ 1:1:1:1 $ $ 2:3:7:8 $ $ 2:3:3:4 $ $ 2:3:3:7 $ $ 2:3:3:8 $ $ 2:5:5:8 $ $ 2:5:5:9 $
$ 2:7:7:3 $ $ 2:8:8:3 $ $ 2:3:3:3 $ $ 2:5:5:5 $ $ 2:7:7:7 $ $ 2:9:9:9 $ $ 2:2:3:7 $
$ 2:2:3:8 $ $ 2:2:5:8 $ $ 2:2:5:9 $ $ 2:3:2:3 $ $ 2:5:2:5 $ $ 2:7:2:7 $ $ 2:9:2:9 $
$ 2:2:2:3 $ $ 2:2:2:5 $ $ 2:2:2:9 $ $ 3:4:5:6 $ $ 3:5:6:7 $ $ 3:5:7:9 $ $ 3:4:4:5 $
$ 3:5:5:7 $ $ 3:4:4:4 $ $ 3:5:5:5 $ $ 3:7:7:7 $ $ 3:8:8:8 $ $ 3:3:4:5 $ $ 3:3:5:7 $
$ 3:4:3:4 $ $ 3:5:3:5 $ $ 3:7:3:7 $ $ 3:8:3:8 $ $ 3:3:3:4 $ $ 3:3:3:5 $ $ 3:3:3:7 $
$ 3:3:3:8 $ $ 4:5:6:7 $ $ 4:5:6:8 $ $ 4:6:7:8 $ $ 4:5:5:6 $ $ 4:5:5:5 $ $ 4:7:7:7 $
$ 4:9:9:9 $ $ 4:4:5:6 $ $ 4:5:4:5 $ $ 4:7:4:7 $ $ 4:9:4:9 $ $ 4:4:4:5 $ $ 4:4:4:7 $
$ 4:4:4:9 $ $ 5:6:7:8 $ $ 5:6:6:7 $ $ 5:7:7:9 $ $ 5:6:6:6 $ $ 5:7:7:7 $ $ 5:8:8:8 $
$ 5:9:9:9 $ $ 5:5:6:7 $ $ 5:5:7:9 $ $ 5:6:5:6 $ $ 5:7:5:7 $ $ 5:8:5:8 $ $ 5:9:5:9 $
$ 5:5:5:6 $ $ 5:5:5:7 $ $ 5:5:5:8 $ $ 5:5:5:9 $ $ 6:7:8:9 $ $ 6:7:7:8 $ $ 6:7:7:7 $
$ 6:6:7:8 $ $ 6:7:6:7 $ $ 6:6:6:7 $ $ 7:8:8:9 $ $ 7:8:8:8 $ $ 7:9:9:9 $ $ 7:7:8:9 $
$ 7:8:7:8 $ $ 7:9:7:9 $ $ 7:7:7:8 $ $ 7:7:7:9 $ $ 8:9:9:9 $ $ 8:9:8:9 $ $ 8:8:8:9 $
$ 1:2:5:8 $ $ 1:2:5:9 $ $ 1:3:5:7 $ $ 1:3:5:9 $ $ 1:3:7:9 $ $ 1:4:5:7 $ $ 1:4:6:7 $
$ 1:4:6:8 $ $ 1:4:6:9 $ $ 1:4:7:9 $ $ 1:5:7:9 $ $ 1:3:3:5 $ $ 1:3:3:7 $ $ 1:4:4:6 $
$ 1:4:4:7 $ $ 1:4:4:9 $ $ 1:5:5:2 $ $ 1:5:5:3 $ $ 1:5:5:7 $ $ 1:5:5:9 $ $ 1:6:6:4 $
$ 1:6:6:8 $ $ 1:7:7:3 $ $ 1:7:7:4 $ $ 1:7:7:5 $ $ 1:7:7:9 $ $ 1:8:8:6 $ $ 1:9:9:4 $
$ 1:9:9:5 $ $ 1:9:9:7 $ $ 1:3:3:3 $ $ 1:4:4:4 $ $ 1:5:5:5 $ $ 1:6:6:6 $ $ 1:7:7:7 $
$ 1:8:8:8 $ $ 1:9:9:9 $ $ 1:1:3:5 $ $ 1:1:3:6 $ $ 1:1:3:7 $ $ 1:1:3:8 $ $ 1:1:3:9 $
$ 1:1:4:6 $ $ 1:1:4:7 $ $ 1:1:4:9 $ $ 1:1:5:7 $ $ 1:1:5:9 $ $ 1:1:6:8 $ $ 1:1:7:9 $
$ 1:3:1:3 $ $ 1:4:1:4 $ $ 1:5:1:5 $ $ 1:6:1:6 $ $ 1:7:1:7 $ $ 1:8:1:8 $ $ 1:9:1:9 $
$ 1:1:1:3 $ $ 1:1:1:4 $ $ 1:1:1:5 $ $ 1:1:1:6 $ $ 1:1:1:7 $ $ 1:1:1:8 $ $ 1:1:1:9 $
$ 1:1:1:1 $ $ 2:3:7:8 $ $ 2:3:3:4 $ $ 2:3:3:7 $ $ 2:3:3:8 $ $ 2:5:5:8 $ $ 2:5:5:9 $
$ 2:7:7:3 $ $ 2:8:8:3 $ $ 2:3:3:3 $ $ 2:5:5:5 $ $ 2:7:7:7 $ $ 2:9:9:9 $ $ 2:2:3:7 $
$ 2:2:3:8 $ $ 2:2:5:8 $ $ 2:2:5:9 $ $ 2:3:2:3 $ $ 2:5:2:5 $ $ 2:7:2:7 $ $ 2:9:2:9 $
$ 2:2:2:3 $ $ 2:2:2:5 $ $ 2:2:2:9 $ $ 3:4:5:6 $ $ 3:5:6:7 $ $ 3:5:7:9 $ $ 3:4:4:5 $
$ 3:5:5:7 $ $ 3:4:4:4 $ $ 3:5:5:5 $ $ 3:7:7:7 $ $ 3:8:8:8 $ $ 3:3:4:5 $ $ 3:3:5:7 $
$ 3:4:3:4 $ $ 3:5:3:5 $ $ 3:7:3:7 $ $ 3:8:3:8 $ $ 3:3:3:4 $ $ 3:3:3:5 $ $ 3:3:3:7 $
$ 3:3:3:8 $ $ 4:5:6:7 $ $ 4:5:6:8 $ $ 4:6:7:8 $ $ 4:5:5:6 $ $ 4:5:5:5 $ $ 4:7:7:7 $
$ 4:9:9:9 $ $ 4:4:5:6 $ $ 4:5:4:5 $ $ 4:7:4:7 $ $ 4:9:4:9 $ $ 4:4:4:5 $ $ 4:4:4:7 $
$ 4:4:4:9 $ $ 5:6:7:8 $ $ 5:6:6:7 $ $ 5:7:7:9 $ $ 5:6:6:6 $ $ 5:7:7:7 $ $ 5:8:8:8 $
$ 5:9:9:9 $ $ 5:5:6:7 $ $ 5:5:7:9 $ $ 5:6:5:6 $ $ 5:7:5:7 $ $ 5:8:5:8 $ $ 5:9:5:9 $
$ 5:5:5:6 $ $ 5:5:5:7 $ $ 5:5:5:8 $ $ 5:5:5:9 $ $ 6:7:8:9 $ $ 6:7:7:8 $ $ 6:7:7:7 $
$ 6:6:7:8 $ $ 6:7:6:7 $ $ 6:6:6:7 $ $ 7:8:8:9 $ $ 7:8:8:8 $ $ 7:9:9:9 $ $ 7:7:8:9 $
$ 7:8:7:8 $ $ 7:9:7:9 $ $ 7:7:7:8 $ $ 7:7:7:9 $ $ 8:9:9:9 $ $ 8:9:8:9 $ $ 8:8:8:9 $
Table 3.  The bracket relations
$\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$
$\pi_1$ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $\pi_6$ $-\pi_5$ $0$ $0$
$\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$
$\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$
$\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$
$\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$
$\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$
$\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$
$\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$
$\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$
$\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$
$\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$
$\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$
$\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$
$\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$
$\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$
$\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$
$\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$
$\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$
$\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$
$\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$
$\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$
$\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$
$\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$
$\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$
$\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$
$\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$
$\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$
$\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$
$\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$
$\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$
$\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
$\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$
$\pi_1$ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $\pi_6$ $-\pi_5$ $0$ $0$
$\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$
$\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$
$\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$
$\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$
$\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$
$\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$
$\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$
$\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$
$\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$
$\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$
$\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$
$\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$
$\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$
$\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$
$\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$
$\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$
$\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$
$\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$
$\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$
$\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$
$\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$
$\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$
$\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$
$\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$
$\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$
$\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$
$\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$
$\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$
$\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$
$\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
Table 4.  The manifolds of equilibria of type OEE
No. Relative Equilibria Features Conditions and Parameters
$\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$
$(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
No. Relative Equilibria Features Conditions and Parameters
$\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$
$(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
Table 5.  Equilibria with π10 = π12 = 0
No. Relative Equilibria Features Conditions and Parameters Types
$(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$
$(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$
$(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$
$\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $OEE$
No. Relative Equilibria Features Conditions and Parameters Types
$(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$
$(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$
$(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$
$\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $OEE$
Table 6.  Equilibria of the reduced system
Equilibria Conditions and Features
$E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$
$E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$
$E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$
$E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$
$E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$
$E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$
$E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$
$E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
Equilibria Conditions and Features
$E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$
$E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$
$E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$
$E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$
$E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$
$E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$
$E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$
$E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[9]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[10]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (47)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]