\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The coupled 1:2 resonance in a symmetric case and parametric amplification model

  • * Corresponding author: Reza Mazrooei-Sebdani

    * Corresponding author: Reza Mazrooei-Sebdani 
Abstract / Introduction Full Text(HTML) Figure(11) / Table(6) Related Papers Cited by
  • This paper deals with the coupled Hamiltonian $ 1 $:$ 2 $ resonance, i.e. the Hamiltonian $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. This resonance is of the first order. We isolate several integrable cases. Our main focus is on two models. In the first part of the paper, we present a discrete symmetric normal form truncated to order three and we compute the relative equilibria for its corresponding system. In the second part, the paper is devoted to the study of the Hamiltonian describing the four-wave mixing (FWM) model. In addition to the Hamiltonian, the corresponding system possesses three more independent integrals. We use these integrals to obtain estimates for the phase space and total energy. Further, we compute the relative equilibria of the FWM system for the $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. Finally, we carry out some numerical experiments for the detuned system.

    Mathematics Subject Classification: Primary: 37J12, 37N20; Secondary: 37J40, 37J35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sketch of the FWM model where a photon at $ \omega_1 $ and $ \omega_4 $ is annihilated while a photon at $ \omega_2 $ and $ \omega_3 $ is created

    Figure 2.  Changes of $ \tilde{H} $ respect to initial conditions

    Figure 3.  Changes of $ \tilde{H} $ respect to distance

    Figure 4.  $ \pi_j(T) $ for $ j = 1,k_ge 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $ respect to $ T $

    Figure 5.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $

    Figure 6.  $ (\pi_1(T),\pi_j(T)) $ for all $ j = 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $

    Figure 7.  Changes of $ \tilde{H} $ respect to $ \pi_1(T) $

    Figure 8.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1+\frac{1}{8},k_ge \nu_2 = 2+\frac{1}{2},k_ge \nu_3 = 1+\frac{1}{8},k_ge \nu_4 = 2+\frac{1}{2} $ and $ \eta_1 = \eta_2 = \frac{3}{2}(\frac{\nu_2-2\nu_3}{9\gamma}) = \frac{1}{24} $, $ \eta = \eta_1+\frac{1}{3}\eta_2 = \frac{1}{18} $

    Figure 9.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.1118423612,k_ge \eta_1 = 0.07710541672,k_ge \eta_2 = 0.1042108334 $

    Figure 10.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.06174877145,k_ge \eta_1 = \frac{1}{20},k_ge \eta_2 = \frac{1}{40} $

    Figure 11.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = \frac{7}{160},k_ge \eta_1 = \frac{1}{60},k_ge \eta_2 = \frac{1}{20} $

    Table 1.  First order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $

    $ 1:2:3:4 $ $ 1:2:3:5 $ $ 1:2:3:6 $ $ 1:2:3:7 $ $ 1:2:3:8 $ $ 1:2:3:9 $ $ 1:2:4:5 $
    $ 1:2:4:6 $ $ 1:2:4:7 $ $ 1:2:4:8 $ $ 1:2:4:9 $ $ 1:2:5:6 $ $ 1:2:5:7 $ $ 1:2:6:7 $
    $ 1:2:6:8 $ $ 1:2:7:8 $ $ 1:2:7:9 $ $ 1:2:8:9 $ $ 1:3:4:5 $ $ 1:3:4:6 $ $ 1:3:4:7 $
    $ 1:3:4:8 $ $ 1:3:5:6 $ $ 1:3:6:7 $ $ 1:3:6:9 $ $ 1:4:5:6 $ $ 1:4:5:8 $ $ 1:4:5:9 $
    $ 1:4:7:8 $ $ 1:4:8:9 $ $ 1:5:6:7 $ $ 1:6:7:8 $ $ 1:7:8:9 $ $ 1:2:2:3 $ $ 1:2:2:4 $
    $ 1:2:2:5 $ $ 1:2:2:6 $ $ 1:2:2:7 $ $ 1:2:2:8 $ $ 1:2:2:9 $ $ 1:3:3:2 $ $ 1:3:3:4 $
    $ 1:3:3:6 $ $ 1:4:4:2 $ $ 1:4:4:3 $ $ 1:4:4:5 $ $ 1:4:4:8 $ $ 1:5:5:4 $ $ 1:5:5:6 $
    $ 1:6:6:3 $ $ 1:6:6:5 $ $ 1:6:6:7 $ $ 1:7:7:6 $ $ 1:7:7:8 $ $ 1:8:8:4 $ $ 1:8:8:7 $
    $ 1:8:8:9 $ $ 1:9:9:8 $ $ 1:2:2:2 $ $ 1:1:2:3 $ $ 1:1:2:4 $ $ 1:1:2:5 $ $ 1:1:2:6 $
    $ 1:1:2:7 $ $ 1:1:2:8 $ $ 1:1:2:9 $ $ 1:1:3:4 $ $ 1:1:4:5 $ $ 1:1:5:6 $ $ 1:1:6:7 $
    $ 1:1:7:8 $ $ 1:1:8:9 $ $ 1:2:1:2 $ $ 1:1:1:2 $ $ 2:3:4:5 $ $ 2:3:4:6 $ $ 2:3:4:7 $
    $ 2:3:4:8 $ $ 2:3:5:6 $ $ 2:3:5:7 $ $ 2:3:5:8 $ $ 2:3:6:8 $ $ 2:3:6:9 $ $ 2:4:5:6 $
    $ 2:4:5:7 $ $ 2:4:5:8 $ $ 2:4:5:9 $ $ 2:4:6:7 $ $ 2:4:6:9 $ $ 2:4:7:8 $ $ 2:4:7:9 $
    $ 2:4:8:9 $ $ 2:5:7:9 $ $ 2:3:3:5 $ $ 2:3:3:6 $ $ 2:4:4:3 $ $ 2:4:4:5 $ $ 2:4:4:7 $
    $ 2:4:4:9 $ $ 2:5:5:3 $ $ 2:5:5:7 $ $ 2:6:6:3 $ $ 2:7:7:5 $ $ 2:7:7:9 $ $ 2:2:3:4 $
    $ 2:2:3:5 $ $ 2:2:4:5 $ $ 2:2:4:7 $ $ 2:2:4:9 $ $ 2:2:5:7 $ $ 2:2:7:9 $ $ 3:4:6:7 $
    $ 3:4:6:8 $ $ 3:4:6:9 $ $ 3:4:7:8 $ $ 3:5:6:8 $ $ 3:5:6:9 $ $ 3:6:7:9 $ $ 3:6:8:9 $
    $ 3:4:4:7 $ $ 3:4:4:8 $ $ 3:5:5:8 $ $ 3:6:6:7 $ $ 3:6:6:8 $ $ 3:3:4:6 $ $ 3:3:4:7 $
    $ 3:3:5:6 $ $ 3:3:5:8 $ $ 3:3:6:7 $ $ 3:3:6:8 $ $ 4:5:8:9 $ $ 4:5:5:9 $ $ 4:8:8:9 $
    $ 4:4:5:8 $ $ 4:4:5:9 $ $ 4:4:7:8 $ $ 4:4:8:9 $
     | Show Table
    DownLoad: CSV

    Table 2.  Second order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $

    $ 1:2:5:8 $ $ 1:2:5:9 $ $ 1:3:5:7 $ $ 1:3:5:9 $ $ 1:3:7:9 $ $ 1:4:5:7 $ $ 1:4:6:7 $
    $ 1:4:6:8 $ $ 1:4:6:9 $ $ 1:4:7:9 $ $ 1:5:7:9 $ $ 1:3:3:5 $ $ 1:3:3:7 $ $ 1:4:4:6 $
    $ 1:4:4:7 $ $ 1:4:4:9 $ $ 1:5:5:2 $ $ 1:5:5:3 $ $ 1:5:5:7 $ $ 1:5:5:9 $ $ 1:6:6:4 $
    $ 1:6:6:8 $ $ 1:7:7:3 $ $ 1:7:7:4 $ $ 1:7:7:5 $ $ 1:7:7:9 $ $ 1:8:8:6 $ $ 1:9:9:4 $
    $ 1:9:9:5 $ $ 1:9:9:7 $ $ 1:3:3:3 $ $ 1:4:4:4 $ $ 1:5:5:5 $ $ 1:6:6:6 $ $ 1:7:7:7 $
    $ 1:8:8:8 $ $ 1:9:9:9 $ $ 1:1:3:5 $ $ 1:1:3:6 $ $ 1:1:3:7 $ $ 1:1:3:8 $ $ 1:1:3:9 $
    $ 1:1:4:6 $ $ 1:1:4:7 $ $ 1:1:4:9 $ $ 1:1:5:7 $ $ 1:1:5:9 $ $ 1:1:6:8 $ $ 1:1:7:9 $
    $ 1:3:1:3 $ $ 1:4:1:4 $ $ 1:5:1:5 $ $ 1:6:1:6 $ $ 1:7:1:7 $ $ 1:8:1:8 $ $ 1:9:1:9 $
    $ 1:1:1:3 $ $ 1:1:1:4 $ $ 1:1:1:5 $ $ 1:1:1:6 $ $ 1:1:1:7 $ $ 1:1:1:8 $ $ 1:1:1:9 $
    $ 1:1:1:1 $ $ 2:3:7:8 $ $ 2:3:3:4 $ $ 2:3:3:7 $ $ 2:3:3:8 $ $ 2:5:5:8 $ $ 2:5:5:9 $
    $ 2:7:7:3 $ $ 2:8:8:3 $ $ 2:3:3:3 $ $ 2:5:5:5 $ $ 2:7:7:7 $ $ 2:9:9:9 $ $ 2:2:3:7 $
    $ 2:2:3:8 $ $ 2:2:5:8 $ $ 2:2:5:9 $ $ 2:3:2:3 $ $ 2:5:2:5 $ $ 2:7:2:7 $ $ 2:9:2:9 $
    $ 2:2:2:3 $ $ 2:2:2:5 $ $ 2:2:2:9 $ $ 3:4:5:6 $ $ 3:5:6:7 $ $ 3:5:7:9 $ $ 3:4:4:5 $
    $ 3:5:5:7 $ $ 3:4:4:4 $ $ 3:5:5:5 $ $ 3:7:7:7 $ $ 3:8:8:8 $ $ 3:3:4:5 $ $ 3:3:5:7 $
    $ 3:4:3:4 $ $ 3:5:3:5 $ $ 3:7:3:7 $ $ 3:8:3:8 $ $ 3:3:3:4 $ $ 3:3:3:5 $ $ 3:3:3:7 $
    $ 3:3:3:8 $ $ 4:5:6:7 $ $ 4:5:6:8 $ $ 4:6:7:8 $ $ 4:5:5:6 $ $ 4:5:5:5 $ $ 4:7:7:7 $
    $ 4:9:9:9 $ $ 4:4:5:6 $ $ 4:5:4:5 $ $ 4:7:4:7 $ $ 4:9:4:9 $ $ 4:4:4:5 $ $ 4:4:4:7 $
    $ 4:4:4:9 $ $ 5:6:7:8 $ $ 5:6:6:7 $ $ 5:7:7:9 $ $ 5:6:6:6 $ $ 5:7:7:7 $ $ 5:8:8:8 $
    $ 5:9:9:9 $ $ 5:5:6:7 $ $ 5:5:7:9 $ $ 5:6:5:6 $ $ 5:7:5:7 $ $ 5:8:5:8 $ $ 5:9:5:9 $
    $ 5:5:5:6 $ $ 5:5:5:7 $ $ 5:5:5:8 $ $ 5:5:5:9 $ $ 6:7:8:9 $ $ 6:7:7:8 $ $ 6:7:7:7 $
    $ 6:6:7:8 $ $ 6:7:6:7 $ $ 6:6:6:7 $ $ 7:8:8:9 $ $ 7:8:8:8 $ $ 7:9:9:9 $ $ 7:7:8:9 $
    $ 7:8:7:8 $ $ 7:9:7:9 $ $ 7:7:7:8 $ $ 7:7:7:9 $ $ 8:9:9:9 $ $ 8:9:8:9 $ $ 8:8:8:9 $
     | Show Table
    DownLoad: CSV

    Table 3.  The bracket relations

    $\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$
    $\pi_1$ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $\pi_6$ $-\pi_5$ $0$ $0$
    $\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$
    $\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$
    $\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$
    $\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$
    $\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$
    $\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$
    $\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$
    $\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$
    $\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$
    $\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$
    $\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$
    $\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$
    $\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$
    $\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
    $\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$
    $\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$
    $\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$
    $\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$
    $\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$
    $\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$
    $\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$
    $\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$
    $\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
    $\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$
    $\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$
    $\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$
    $\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$
    $\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$
    $\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$
    $\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$
    $\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$
    $\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
     | Show Table
    DownLoad: CSV

    Table 4.  The manifolds of equilibria of type OEE

    No. Relative Equilibria Features Conditions and Parameters
    $\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
    $\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
    $(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$
    $(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
     | Show Table
    DownLoad: CSV

    Table 5.  Equilibria with π10 = π12 = 0

    No. Relative Equilibria Features Conditions and Parameters Types
    $(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$
    $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
    $(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$
    $(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$
    $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
    $(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$
    $(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$
    $\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $OEE$
     | Show Table
    DownLoad: CSV

    Table 6.  Equilibria of the reduced system

    Equilibria Conditions and Features
    $E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$
    $E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$
    $E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$
    $E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$
    $E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$
    $E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$
    $E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$
    $E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
     | Show Table
    DownLoad: CSV
  • [1] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006.
    [2] H. W. BroerG. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9.
    [3] H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8.
    [4] R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4.
    [5] G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838. 
    [6] O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4.
    [7] C. De AngelisM. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774.
    [8] J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649.
    [9] J. EgeaS. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5.
    [10] D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571.
    [11] G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2.
    [12] H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007.
    [13] H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263.
    [14] G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010.
    [15] M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265.
    [16] S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503.
    [17] H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906.
    [18] J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805.
    [19] A. A. RedyukA. E. BednyakovaS. B. MedvedevM. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231. 
    [20] D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011.
    [21] J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007.
    [22] S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986.
    [23] E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817.
    [24] E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208.
    [25] E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067.
    [26] F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5.
    [27] L. Vivien and  L. PavesiHandbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013. 
    [28] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.
  • 加载中

Figures(11)

Tables(6)

SHARE

Article Metrics

HTML views(1855) PDF downloads(334) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return