doi: 10.3934/dcdsb.2020256

Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

* Corresponding author: Ling Zhou

Received  January 2020 Revised  July 2020 Published  August 2020

In this paper we study a nonlocal diffusion model with double free boundaries in time periodic environment, which is the natural extension of the free boundary model in [17], where local diffusion is used to describe the population dispersal. We give the existence and uniqueness of global solution and consider the properties of principle eigenvalue of time-periodic parabolic-type eigenvalue problem. With the help of attractivity of time periodic solutions, we establish a spreading-vanishing dichotomy. The sharp criteria for spreading and vanishing are also obtained.

Citation: Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020256
References:
[1]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[2]

C. CortázarF. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound., 21 (2019), 441-462.  doi: 10.4171/IFB/430.  Google Scholar

[3]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[4]

J.-F. CaoY. H. DuF. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

R. S. CantrellC. CosnerY Lou and D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.   Google Scholar

[6]

C. CortázarJ. CovilleM. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.  doi: 10.1016/j.jde.2007.06.002.  Google Scholar

[7]

C. CosnerJ. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.  doi: 10.1080/17513758.2011.588341.  Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl., 185 (2006), 461-485.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[10]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[11]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[12]

Q. L. CaoF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.  doi: 10.1093/imamat/hxw059.  Google Scholar

[13]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[14]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1539-1573.  doi: 10.1016/j.anihpc.2019.01.005.  Google Scholar

[15]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[16]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[17]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[18]

Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 279-305.  doi: 10.1016/j.anihpc.2013.11.004.  Google Scholar

[19]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[20]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542. Google Scholar

[21]

J. P. Gao, S. J. Guo and W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-Kpp equations in time periodic and space heterogeneous media, preprint, arXiv:1808.07162v1. Google Scholar

[22]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.  doi: 10.1017/S0956792506006462.  Google Scholar

[23]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[25]

C. Y. KaoY. Lou and W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.  Google Scholar

[26]

Y. Kaneko and Y. Yanmada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[27]

F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412(1), (2014), 485-497. doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[28]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483(2) (2020), 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[29]

N. RawalW. X. Shen and A. J. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35 (2015), 1609-1640.  doi: 10.3934/dcds.2015.35.1609.  Google Scholar

[30]

N. Rawal and W. X. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.  Google Scholar

[31]

W. X. Shen and X. X. Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259 (2015), 7375-7405.  doi: 10.1016/j.jde.2015.08.026.  Google Scholar

[32]

W. X. Shen and A. J. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[33]

W. X. Shen and A. J. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[34]

Z. W. Shen and H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations, 267 (2019), 1423-1466.  doi: 10.1016/j.jde.2019.02.013.  Google Scholar

[35]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[36]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[37]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[38]

M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67(5) (2016), 132, 24 pp. doi: 10.1007/s00033-016-0729-9.  Google Scholar

[39]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.  Google Scholar

[40]

L. ZhouS. Zhang and Z. H. Liu, A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient, Acta Appl. Math., 143 (2016), 189-216.  doi: 10.1007/s10440-015-0035-0.  Google Scholar

[41]

L. ZhouS. Zhang and Z. H. Liu, Pattern formations for a strong interacting free boundary problem, Acta Appl. Math., 148 (2017), 121-142.  doi: 10.1007/s10440-016-0081-2.  Google Scholar

show all references

References:
[1]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[2]

C. CortázarF. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound., 21 (2019), 441-462.  doi: 10.4171/IFB/430.  Google Scholar

[3]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[4]

J.-F. CaoY. H. DuF. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

R. S. CantrellC. CosnerY Lou and D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.   Google Scholar

[6]

C. CortázarJ. CovilleM. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.  doi: 10.1016/j.jde.2007.06.002.  Google Scholar

[7]

C. CosnerJ. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.  doi: 10.1080/17513758.2011.588341.  Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl., 185 (2006), 461-485.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[10]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[11]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[12]

Q. L. CaoF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.  doi: 10.1093/imamat/hxw059.  Google Scholar

[13]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[14]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1539-1573.  doi: 10.1016/j.anihpc.2019.01.005.  Google Scholar

[15]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[16]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[17]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[18]

Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 279-305.  doi: 10.1016/j.anihpc.2013.11.004.  Google Scholar

[19]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[20]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542. Google Scholar

[21]

J. P. Gao, S. J. Guo and W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-Kpp equations in time periodic and space heterogeneous media, preprint, arXiv:1808.07162v1. Google Scholar

[22]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.  doi: 10.1017/S0956792506006462.  Google Scholar

[23]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[25]

C. Y. KaoY. Lou and W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.  Google Scholar

[26]

Y. Kaneko and Y. Yanmada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[27]

F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412(1), (2014), 485-497. doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[28]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483(2) (2020), 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[29]

N. RawalW. X. Shen and A. J. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35 (2015), 1609-1640.  doi: 10.3934/dcds.2015.35.1609.  Google Scholar

[30]

N. Rawal and W. X. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.  Google Scholar

[31]

W. X. Shen and X. X. Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259 (2015), 7375-7405.  doi: 10.1016/j.jde.2015.08.026.  Google Scholar

[32]

W. X. Shen and A. J. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[33]

W. X. Shen and A. J. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[34]

Z. W. Shen and H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations, 267 (2019), 1423-1466.  doi: 10.1016/j.jde.2019.02.013.  Google Scholar

[35]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[36]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[37]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[38]

M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67(5) (2016), 132, 24 pp. doi: 10.1007/s00033-016-0729-9.  Google Scholar

[39]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.  Google Scholar

[40]

L. ZhouS. Zhang and Z. H. Liu, A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient, Acta Appl. Math., 143 (2016), 189-216.  doi: 10.1007/s10440-015-0035-0.  Google Scholar

[41]

L. ZhouS. Zhang and Z. H. Liu, Pattern formations for a strong interacting free boundary problem, Acta Appl. Math., 148 (2017), 121-142.  doi: 10.1007/s10440-016-0081-2.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[5]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[15]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]