In this paper we study a nonlocal diffusion model with double free boundaries in time periodic environment, which is the natural extension of the free boundary model in [
Citation: |
[1] |
H. Berestycki, J. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72(7) (2016), 1693-1745.
doi: 10.1007/s00285-015-0911-2.![]() ![]() ![]() |
[2] |
C. Cortázar, F. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound., 21(4) (2019), 441-462.
doi: 10.4171/IFB/430.![]() ![]() ![]() |
[3] |
J. F. Cao, W. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449(2) (2017), 1015-1035.
doi: 10.1016/j.jmaa.2016.12.044.![]() ![]() ![]() |
[4] |
J.-F. Cao, Y. H. Du, F. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277(8) (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013.![]() ![]() ![]() |
[5] |
R. S. Cantrell, C. Cosner, Y Lou and D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model, Can. Appl. Math. Q., 20(1) (2012), 15-38.
![]() ![]() |
[6] |
C. Cortázar, J. Coville, M. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241(2) (2007), 332-358.
doi: 10.1016/j.jde.2007.06.002.![]() ![]() ![]() |
[7] |
C. Cosner, J. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6(2) (2012), 395-405.
doi: 10.1080/17513758.2011.588341.![]() ![]() ![]() |
[8] |
J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl., 185(3) (2006), 461-485.
doi: 10.1007/s10231-005-0163-7.![]() ![]() ![]() |
[9] |
J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249(11) (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003.![]() ![]() ![]() |
[10] |
J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39(5) (2008), 1693-1709.
doi: 10.1137/060676854.![]() ![]() ![]() |
[11] |
X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2(1) (1997), 125-160.
![]() ![]() |
[12] |
Q. L. Cao, F. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82(2) (2017), 445-470.
doi: 10.1093/imamat/hxw059.![]() ![]() ![]() |
[13] |
W. W. Ding, Y. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262(10) (2017), 4988-5021.
doi: 10.1016/j.jde.2017.01.016.![]() ![]() ![]() |
[14] |
W. W. Ding, Y. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(6) (2019), 1539-1573.
doi: 10.1016/j.anihpc.2019.01.005.![]() ![]() ![]() |
[15] |
Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42(1) (2010), 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
[16] |
Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250(12) (2011), 4336-4366.
doi: 10.1016/j.jde.2011.02.011.![]() ![]() ![]() |
[17] |
Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265(9) (2013), 2089-2142.
doi: 10.1016/j.jfa.2013.07.016.![]() ![]() ![]() |
[18] |
Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32(2) (2015), 279-305.
doi: 10.1016/j.anihpc.2013.11.004.![]() ![]() ![]() |
[19] |
Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19(10) (2014), 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105.![]() ![]() ![]() |
[20] |
Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542.
![]() |
[21] |
J. P. Gao, S. J. Guo and W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-Kpp equations in time periodic and space heterogeneous media, preprint, arXiv:1808,07162v1.
![]() |
[22] |
V. Hutson and M. Grinfeld, Non-local dispersal and bistability, European J. Appl. Math., 17(2) (2006), 221-232.
doi: 10.1017/S0956792506006462.![]() ![]() ![]() |
[23] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47(6) (2003), 483-517.
doi: 10.1007/s00285-003-0210-1.![]() ![]() ![]() |
[24] |
C. Y. Kao, Y. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26(2) (2010), 551-596.
doi: 10.3934/dcds.2010.26.551.![]() ![]() ![]() |
[25] |
C. Y. Kao, Y. Lou and W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17(6) (2012), 2047-2072.
doi: 10.3934/dcdsb.2012.17.2047.![]() ![]() ![]() |
[26] |
Y. Kaneko and Y. Yanmada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21(2) (2011), 467-492.
![]() ![]() |
[27] |
F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412(1), (2014), 485-497.
doi: 10.1016/j.jmaa.2013.10.071.![]() ![]() ![]() |
[28] |
L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483(2) (2020), 123646.
doi: 10.1016/j.jmaa.2019.123646.![]() ![]() ![]() |
[29] |
N. Rawal, W. X. Shen and A. J. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35(4) (2015), 1609-1640.
doi: 10.3934/dcds.2015.35.1609.![]() ![]() ![]() |
[30] |
N. Rawal and W. X. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24(4) (2012), 927-954.
doi: 10.1007/s10884-012-9276-z.![]() ![]() ![]() |
[31] |
W. X. Shen and X. X. Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259(12) (2015), 7375-7405.
doi: 10.1016/j.jde.2015.08.026.![]() ![]() ![]() |
[32] |
W. X. Shen and A. J. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249(4) (2010), 747-795.
doi: 10.1016/j.jde.2010.04.012.![]() ![]() ![]() |
[33] |
W. X. Shen and A. J. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140(5) (2012), 1681-1696.
doi: 10.1090/S0002-9939-2011-11011-6.![]() ![]() ![]() |
[34] |
Z. W. Shen and H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations, 267 (2019), 1423-1466.
doi: 10.1016/j.jde.2019.02.013.![]() ![]() ![]() |
[35] |
M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256(10) (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013.![]() ![]() ![]() |
[36] |
M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258(4) (2015), 1252-1266.
doi: 10.1016/j.jde.2014.10.022.![]() ![]() ![]() |
[37] |
M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270(2) (2016), 483-508.
doi: 10.1016/j.jfa.2015.10.014.![]() ![]() ![]() |
[38] |
M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67(5) (2016), 132, 24 pp.
doi: 10.1007/s00033-016-0729-9.![]() ![]() ![]() |
[39] |
L. Zhou, S. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.
doi: 10.1016/j.amc.2016.05.008.![]() ![]() ![]() |
[40] |
L. Zhou, S. Zhang and Z. H. Liu, A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient, Acta Appl. Math., 143 (2016), 189-216.
doi: 10.1007/s10440-015-0035-0.![]() ![]() ![]() |
[41] |
L. Zhou, S. Zhang and Z. H. Liu, Pattern formations for a strong interacting free boundary problem, Acta Appl. Math., 148 (2017), 121-142.
doi: 10.1007/s10440-016-0081-2.![]() ![]() ![]() |