doi: 10.3934/dcdsb.2020256

Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

* Corresponding author: Ling Zhou

Received  January 2020 Revised  July 2020 Published  August 2020

In this paper we study a nonlocal diffusion model with double free boundaries in time periodic environment, which is the natural extension of the free boundary model in [17], where local diffusion is used to describe the population dispersal. We give the existence and uniqueness of global solution and consider the properties of principle eigenvalue of time-periodic parabolic-type eigenvalue problem. With the help of attractivity of time periodic solutions, we establish a spreading-vanishing dichotomy. The sharp criteria for spreading and vanishing are also obtained.

Citation: Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020256
References:
[1]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[2]

C. CortázarF. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound., 21 (2019), 441-462.  doi: 10.4171/IFB/430.  Google Scholar

[3]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[4]

J.-F. CaoY. H. DuF. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

R. S. CantrellC. CosnerY Lou and D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.   Google Scholar

[6]

C. CortázarJ. CovilleM. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.  doi: 10.1016/j.jde.2007.06.002.  Google Scholar

[7]

C. CosnerJ. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.  doi: 10.1080/17513758.2011.588341.  Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl., 185 (2006), 461-485.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[10]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[11]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[12]

Q. L. CaoF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.  doi: 10.1093/imamat/hxw059.  Google Scholar

[13]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[14]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1539-1573.  doi: 10.1016/j.anihpc.2019.01.005.  Google Scholar

[15]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[16]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[17]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[18]

Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 279-305.  doi: 10.1016/j.anihpc.2013.11.004.  Google Scholar

[19]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[20]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542. Google Scholar

[21]

J. P. Gao, S. J. Guo and W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-Kpp equations in time periodic and space heterogeneous media, preprint, arXiv:1808.07162v1. Google Scholar

[22]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.  doi: 10.1017/S0956792506006462.  Google Scholar

[23]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[25]

C. Y. KaoY. Lou and W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.  Google Scholar

[26]

Y. Kaneko and Y. Yanmada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[27]

F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412(1), (2014), 485-497. doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[28]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483(2) (2020), 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[29]

N. RawalW. X. Shen and A. J. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35 (2015), 1609-1640.  doi: 10.3934/dcds.2015.35.1609.  Google Scholar

[30]

N. Rawal and W. X. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.  Google Scholar

[31]

W. X. Shen and X. X. Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259 (2015), 7375-7405.  doi: 10.1016/j.jde.2015.08.026.  Google Scholar

[32]

W. X. Shen and A. J. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[33]

W. X. Shen and A. J. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[34]

Z. W. Shen and H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations, 267 (2019), 1423-1466.  doi: 10.1016/j.jde.2019.02.013.  Google Scholar

[35]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[36]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[37]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[38]

M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67(5) (2016), 132, 24 pp. doi: 10.1007/s00033-016-0729-9.  Google Scholar

[39]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.  Google Scholar

[40]

L. ZhouS. Zhang and Z. H. Liu, A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient, Acta Appl. Math., 143 (2016), 189-216.  doi: 10.1007/s10440-015-0035-0.  Google Scholar

[41]

L. ZhouS. Zhang and Z. H. Liu, Pattern formations for a strong interacting free boundary problem, Acta Appl. Math., 148 (2017), 121-142.  doi: 10.1007/s10440-016-0081-2.  Google Scholar

show all references

References:
[1]

H. BerestyckiJ. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[2]

C. CortázarF. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound., 21 (2019), 441-462.  doi: 10.4171/IFB/430.  Google Scholar

[3]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[4]

J.-F. CaoY. H. DuF. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

R. S. CantrellC. CosnerY Lou and D. Ryan, Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.   Google Scholar

[6]

C. CortázarJ. CovilleM. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.  doi: 10.1016/j.jde.2007.06.002.  Google Scholar

[7]

C. CosnerJ. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.  doi: 10.1080/17513758.2011.588341.  Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl., 185 (2006), 461-485.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[10]

J. CovilleJ. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.  doi: 10.1137/060676854.  Google Scholar

[11]

X. F. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[12]

Q. L. CaoF. Q. Li and F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445-470.  doi: 10.1093/imamat/hxw059.  Google Scholar

[13]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[14]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1539-1573.  doi: 10.1016/j.anihpc.2019.01.005.  Google Scholar

[15]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[16]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[17]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[18]

Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 279-305.  doi: 10.1016/j.anihpc.2013.11.004.  Google Scholar

[19]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[20]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542. Google Scholar

[21]

J. P. Gao, S. J. Guo and W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-Kpp equations in time periodic and space heterogeneous media, preprint, arXiv:1808.07162v1. Google Scholar

[22]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.  doi: 10.1017/S0956792506006462.  Google Scholar

[23]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[24]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[25]

C. Y. KaoY. Lou and W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.  Google Scholar

[26]

Y. Kaneko and Y. Yanmada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.   Google Scholar

[27]

F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412(1), (2014), 485-497. doi: 10.1016/j.jmaa.2013.10.071.  Google Scholar

[28]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483(2) (2020), 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[29]

N. RawalW. X. Shen and A. J. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35 (2015), 1609-1640.  doi: 10.3934/dcds.2015.35.1609.  Google Scholar

[30]

N. Rawal and W. X. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.  Google Scholar

[31]

W. X. Shen and X. X. Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations, 259 (2015), 7375-7405.  doi: 10.1016/j.jde.2015.08.026.  Google Scholar

[32]

W. X. Shen and A. J. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[33]

W. X. Shen and A. J. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.  Google Scholar

[34]

Z. W. Shen and H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations, 267 (2019), 1423-1466.  doi: 10.1016/j.jde.2019.02.013.  Google Scholar

[35]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[36]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[37]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[38]

M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67(5) (2016), 132, 24 pp. doi: 10.1007/s00033-016-0729-9.  Google Scholar

[39]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.  Google Scholar

[40]

L. ZhouS. Zhang and Z. H. Liu, A reaction-diffusion-advection equation with a free boundary and sign-changing coefficient, Acta Appl. Math., 143 (2016), 189-216.  doi: 10.1007/s10440-015-0035-0.  Google Scholar

[41]

L. ZhouS. Zhang and Z. H. Liu, Pattern formations for a strong interacting free boundary problem, Acta Appl. Math., 148 (2017), 121-142.  doi: 10.1007/s10440-016-0081-2.  Google Scholar

[1]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[2]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020121

[3]

Lei Li, Jianping Wang, Mingxin Wang. The dynamics of nonlocal diffusion systems with different free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3651-3672. doi: 10.3934/cpaa.2020161

[4]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[5]

Meng Zhao. The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks. Electronic Research Archive, 2020, 28 (3) : 1143-1160. doi: 10.3934/era.2020063

[6]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

[7]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[8]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[9]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[10]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[11]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020154

[12]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[13]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[14]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[15]

David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301

[16]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[17]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[18]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[19]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[20]

Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries. Networks & Heterogeneous Media, 2011, 6 (1) : 37-60. doi: 10.3934/nhm.2011.6.37

2019 Impact Factor: 1.27

Article outline

[Back to Top]