
-
Previous Article
Convergence of quasilinear parabolic equations to semilinear equations
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment
Evolutionary de Rham-Hodge method
1. | Department of Mathematics, Michigan State University, MI 48824, USA |
2. | Department of Computer Science and Engineering, Michigan State University, MI 48824, USA |
3. | Department of Mathematics, Department of Biochemistry and Molecular Biology, Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA |
The de Rham-Hodge theory is a landmark of the 20$ ^\text{th} $ Century's mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the potential of the proposed paradigm for data representation and shape analysis of both point cloud data and density maps. To demonstrate the utility of the proposed method, the application is considered to the protein B-factor predictions of a few challenging cases for which existing biophysical models break down.
References:
[1] |
M. Akram and V. Michel,
Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.
doi: 10.1007/s13137-010-0001-y. |
[2] |
D. N. Arnold, R. S. Falk and R. Winther,
Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018. |
[3] |
A. R. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar,
Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.
doi: 10.1016/S0006-3495(01)76033-X. |
[4] |
I. Bahar, A. R. Atilgan and B. Erman,
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.
doi: 10.1016/S1359-0278(97)00024-2. |
[5] |
P. W. Bates, G.-W. Wei and S. Zhao,
Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.
doi: 10.1002/jcc.20796. |
[6] |
P. Bendich, H. Edelsbrunner and M. Kerber,
Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.
doi: 10.1109/TVCG.2010.139. |
[7] |
D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103.
doi: 10.1063/1.5016562. |
[8] |
Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929.
doi: 10.1371/journal.pcbi.1005929. |
[9] |
Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015).
doi: 10.1515/mlbmb-2015-0009. |
[10] |
Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27. |
[11] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690.
doi: 10.1371/journal.pcbi.1005690. |
[12] |
Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914.
doi: 10.1002/cnm.2914. |
[13] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256.
doi: 10.1145/1542362.1542408. |
[14] |
G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian,
On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.
doi: 10.1007/s11263-007-0056-x. |
[15] |
T. Cecil,
A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.
doi: 10.1016/j.jcp.2004.12.022. |
[16] |
Z. Chen, N. A. Baker and G.-W. Wei,
Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.
doi: 10.1007/s00285-011-0402-z. |
[17] |
S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169.
doi: 10.1137/1.9781611975031.75. |
[18] |
V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342.
doi: 10.15607/RSS.2005.I.044. |
[19] |
M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324.
doi: 10.1007/978-3-7643-8621-4_16. |
[20] |
B. Di Fabio and C. Landi,
A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.
doi: 10.1007/s10208-011-9100-x. |
[21] |
Q. Du, C. Liu and X. Wang,
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.
doi: 10.1016/j.jcp.2004.01.029. |
[22] |
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. |
[23] |
H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simplification, in ![]() ![]() ![]() |
[24] |
N. Foster and D. Metaxas,
Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.
doi: 10.1006/gmip.1996.0039. |
[25] |
K. O. Friedrichs,
Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.
doi: 10.1002/cpa.3160080408. |
[26] |
P. Frosini and C. Landi,
Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603.
|
[27] |
P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301.
doi: 10.1007/978-3-642-23672-3_36. |
[28] |
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda,
A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.
doi: 10.1007/s13160-014-0153-5. |
[29] |
H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097.
doi: 10.1109/ICASSP.2010.5495348. |
[30] |
J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13. |
[31] |
T. Hazra, S. A. Ullah, S. Wang, E. Alexov and S. Zhao,
A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.
doi: 10.1007/s00285-019-01372-1. |
[32] |
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989.
![]() ![]() |
[33] |
W. Humphrey, A. Dalke and K. Schulten,
VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.
doi: 10.1016/0263-7855(96)00018-5. |
[34] |
D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp.
doi: 10.1088/1742-5468/2009/03/p03034. |
[35] |
M. Kac,
Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.
doi: 10.1080/00029890.1966.11970915. |
[36] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004.
doi: 10.1007/b97315. |
[37] |
V. Kovacev-Nikolic, P. Bubenik, D. Nikolić and G. Heo,
Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.
doi: 10.1515/sagmb-2015-0057. |
[38] |
H. Lee, H. Kang, M. K. Chung, B.-N. Kim and D. S. Lee,
Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277.
|
[39] |
A. Leis, B. Rockel, L. Andrees and W. Baumeister,
Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.
doi: 10.1016/j.tibs.2008.10.011. |
[40] |
N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp. |
[41] |
Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15. |
[42] |
K. Mikula and D. Sevcovic,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[43] |
K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144.
doi: 10.1103/PhysRevLett.82.1144. |
[44] |
Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6.
doi: 10.1109/IVCNZ.2009.5378430. |
[45] |
D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304.
doi: 10.1021/acs.jcim.9b00334. |
[46] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[47] |
D. D. Nguyen, K. Gao, M. Wang and G.-W. Wei,
MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.
doi: 10.1007/s10822-019-00237-5. |
[48] |
D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179.
doi: 10.1002/cnm.3179. |
[49] |
D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106.
doi: 10.1063/1.4953851. |
[50] |
S. Nickell, C. Kofler, A. P. Leis and W. Baumeister,
A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.
doi: 10.1038/nrm1861. |
[51] |
P. Niyogi, S. Smale and S. Weinberger,
A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.
doi: 10.1137/090762932. |
[52] |
K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101.
doi: 10.1063/1.4922045. |
[53] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[54] |
J. Peschek, N. Braun, T. M. Franzmann, Y. Georgalis, M. Haslbeck, S. Weinkauf and J. Buchner,
The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277.
|
[55] |
D. Pachauri, C. Hinrichs, M. K. Chung, S. C. Johnson and V. Singh,
Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.
doi: 10.1109/TMI.2011.2147327. |
[56] |
D. B. Ray and I. M. Singer,
R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.
doi: 10.1016/0001-8708(71)90045-4. |
[57] |
C. V. Robinson, A Sali and W. Baumeister,
The molecular sociology of the cell, Nature, 450 (2007), 973-982.
doi: 10.1038/nature06523. |
[58] |
V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532. |
[59] |
C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967. |
[60] |
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp. |
[61] |
C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117.
doi: 10.1007/978-3-0348-0257-4_4. |
[62] |
L. E.-J. Spruck,
Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[63] |
Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452.
doi: 10.1145/1201775.882290. |
[64] |
B. Wang, B. Summa, V. Pascucci and M. Vejdemo-Johansson,
Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911.
|
[65] |
L. Wang, L. Li and E. Alexov,
pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197.
|
[66] |
B. Wang and G.-W. Wei,
Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.
doi: 10.1016/j.jcp.2015.10.036. |
[67] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376.
doi: 10.1002/cnm.3376. |
[68] |
G.-W. Wei,
Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.
doi: 10.1007/s11538-010-9511-x. |
[69] |
T. J. Willmore, An Introduction to Differential Geometry, Clarendon Press, Oxford, 2013.
![]() ![]() |
[70] |
K. Xia, X. Feng, Z. Chen, Y. Tong and G.-W. Wei,
Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.
doi: 10.1016/j.jcp.2013.09.034. |
[71] |
K. Xia, X. Feng, Y. Tong and G. W. Wei,
Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.
doi: 10.1002/jcc.23816. |
[72] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[73] |
K. Xia and G.-W. Wei,
Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.
doi: 10.1002/jcc.23953. |
[74] |
Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115.
doi: 10.1063/1.3103496. |
[75] |
S. Zelditch,
Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.
doi: 10.1007/PL00001633. |
[76] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp.
doi: 10.1145/3355089.3356546. |
[77] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108.
doi: 10.1007/s11538-020-00783-2. |
[78] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |
show all references
References:
[1] |
M. Akram and V. Michel,
Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.
doi: 10.1007/s13137-010-0001-y. |
[2] |
D. N. Arnold, R. S. Falk and R. Winther,
Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018. |
[3] |
A. R. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar,
Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.
doi: 10.1016/S0006-3495(01)76033-X. |
[4] |
I. Bahar, A. R. Atilgan and B. Erman,
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.
doi: 10.1016/S1359-0278(97)00024-2. |
[5] |
P. W. Bates, G.-W. Wei and S. Zhao,
Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.
doi: 10.1002/jcc.20796. |
[6] |
P. Bendich, H. Edelsbrunner and M. Kerber,
Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.
doi: 10.1109/TVCG.2010.139. |
[7] |
D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103.
doi: 10.1063/1.5016562. |
[8] |
Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929.
doi: 10.1371/journal.pcbi.1005929. |
[9] |
Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015).
doi: 10.1515/mlbmb-2015-0009. |
[10] |
Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27. |
[11] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690.
doi: 10.1371/journal.pcbi.1005690. |
[12] |
Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914.
doi: 10.1002/cnm.2914. |
[13] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256.
doi: 10.1145/1542362.1542408. |
[14] |
G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian,
On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.
doi: 10.1007/s11263-007-0056-x. |
[15] |
T. Cecil,
A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.
doi: 10.1016/j.jcp.2004.12.022. |
[16] |
Z. Chen, N. A. Baker and G.-W. Wei,
Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.
doi: 10.1007/s00285-011-0402-z. |
[17] |
S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169.
doi: 10.1137/1.9781611975031.75. |
[18] |
V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342.
doi: 10.15607/RSS.2005.I.044. |
[19] |
M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324.
doi: 10.1007/978-3-7643-8621-4_16. |
[20] |
B. Di Fabio and C. Landi,
A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.
doi: 10.1007/s10208-011-9100-x. |
[21] |
Q. Du, C. Liu and X. Wang,
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.
doi: 10.1016/j.jcp.2004.01.029. |
[22] |
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. |
[23] |
H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simplification, in ![]() ![]() ![]() |
[24] |
N. Foster and D. Metaxas,
Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.
doi: 10.1006/gmip.1996.0039. |
[25] |
K. O. Friedrichs,
Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.
doi: 10.1002/cpa.3160080408. |
[26] |
P. Frosini and C. Landi,
Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603.
|
[27] |
P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301.
doi: 10.1007/978-3-642-23672-3_36. |
[28] |
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda,
A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.
doi: 10.1007/s13160-014-0153-5. |
[29] |
H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097.
doi: 10.1109/ICASSP.2010.5495348. |
[30] |
J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13. |
[31] |
T. Hazra, S. A. Ullah, S. Wang, E. Alexov and S. Zhao,
A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.
doi: 10.1007/s00285-019-01372-1. |
[32] |
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989.
![]() ![]() |
[33] |
W. Humphrey, A. Dalke and K. Schulten,
VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.
doi: 10.1016/0263-7855(96)00018-5. |
[34] |
D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp.
doi: 10.1088/1742-5468/2009/03/p03034. |
[35] |
M. Kac,
Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.
doi: 10.1080/00029890.1966.11970915. |
[36] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004.
doi: 10.1007/b97315. |
[37] |
V. Kovacev-Nikolic, P. Bubenik, D. Nikolić and G. Heo,
Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.
doi: 10.1515/sagmb-2015-0057. |
[38] |
H. Lee, H. Kang, M. K. Chung, B.-N. Kim and D. S. Lee,
Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277.
|
[39] |
A. Leis, B. Rockel, L. Andrees and W. Baumeister,
Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.
doi: 10.1016/j.tibs.2008.10.011. |
[40] |
N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp. |
[41] |
Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15. |
[42] |
K. Mikula and D. Sevcovic,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[43] |
K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144.
doi: 10.1103/PhysRevLett.82.1144. |
[44] |
Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6.
doi: 10.1109/IVCNZ.2009.5378430. |
[45] |
D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304.
doi: 10.1021/acs.jcim.9b00334. |
[46] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[47] |
D. D. Nguyen, K. Gao, M. Wang and G.-W. Wei,
MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.
doi: 10.1007/s10822-019-00237-5. |
[48] |
D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179.
doi: 10.1002/cnm.3179. |
[49] |
D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106.
doi: 10.1063/1.4953851. |
[50] |
S. Nickell, C. Kofler, A. P. Leis and W. Baumeister,
A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.
doi: 10.1038/nrm1861. |
[51] |
P. Niyogi, S. Smale and S. Weinberger,
A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.
doi: 10.1137/090762932. |
[52] |
K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101.
doi: 10.1063/1.4922045. |
[53] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[54] |
J. Peschek, N. Braun, T. M. Franzmann, Y. Georgalis, M. Haslbeck, S. Weinkauf and J. Buchner,
The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277.
|
[55] |
D. Pachauri, C. Hinrichs, M. K. Chung, S. C. Johnson and V. Singh,
Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.
doi: 10.1109/TMI.2011.2147327. |
[56] |
D. B. Ray and I. M. Singer,
R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.
doi: 10.1016/0001-8708(71)90045-4. |
[57] |
C. V. Robinson, A Sali and W. Baumeister,
The molecular sociology of the cell, Nature, 450 (2007), 973-982.
doi: 10.1038/nature06523. |
[58] |
V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532. |
[59] |
C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967. |
[60] |
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp. |
[61] |
C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117.
doi: 10.1007/978-3-0348-0257-4_4. |
[62] |
L. E.-J. Spruck,
Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[63] |
Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452.
doi: 10.1145/1201775.882290. |
[64] |
B. Wang, B. Summa, V. Pascucci and M. Vejdemo-Johansson,
Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911.
|
[65] |
L. Wang, L. Li and E. Alexov,
pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197.
|
[66] |
B. Wang and G.-W. Wei,
Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.
doi: 10.1016/j.jcp.2015.10.036. |
[67] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376.
doi: 10.1002/cnm.3376. |
[68] |
G.-W. Wei,
Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.
doi: 10.1007/s11538-010-9511-x. |
[69] |
T. J. Willmore, An Introduction to Differential Geometry, Clarendon Press, Oxford, 2013.
![]() ![]() |
[70] |
K. Xia, X. Feng, Z. Chen, Y. Tong and G.-W. Wei,
Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.
doi: 10.1016/j.jcp.2013.09.034. |
[71] |
K. Xia, X. Feng, Y. Tong and G. W. Wei,
Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.
doi: 10.1002/jcc.23816. |
[72] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[73] |
K. Xia and G.-W. Wei,
Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.
doi: 10.1002/jcc.23953. |
[74] |
Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115.
doi: 10.1063/1.3103496. |
[75] |
S. Zelditch,
Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.
doi: 10.1007/PL00001633. |
[76] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp.
doi: 10.1145/3355089.3356546. |
[77] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108.
doi: 10.1007/s11538-020-00783-2. |
[78] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |



















order |
order |
order |
order |
|
form | ||||
order |
order |
order |
order |
|
form | ||||
type | ||||
tangential | unrestricted | |||
normal | unrestricted |
type | ||||
tangential | unrestricted | |||
normal | unrestricted |
[1] |
Tyrus Berry, Timothy Sauer. Consistent manifold representation for topological data analysis. Foundations of Data Science, 2019, 1 (1) : 1-38. doi: 10.3934/fods.2019001 |
[2] |
Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems and Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693 |
[3] |
Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1269-1290. doi: 10.3934/dcdss.2020073 |
[4] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[5] |
Alberto Zingaro, Ivan Fumagalli, Luca Dede, Marco Fedele, Pasquale C. Africa, Antonio F. Corno, Alfio Quarteroni. A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022052 |
[6] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2155-2185. doi: 10.3934/cpaa.2021062 |
[7] |
Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko. Derivation of cable equation by multiscale analysis for a model of myelinated axons. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 815-839. doi: 10.3934/dcdsb.2019191 |
[8] |
Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153 |
[9] |
Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389 |
[10] |
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 |
[11] |
Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051 |
[12] |
Xuefeng Zhao, Yong Li. A Moser theorem for multiscale mappings. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022037 |
[13] |
George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017 |
[14] |
Erik Carlsson, John Gunnar Carlsson, Shannon Sweitzer. Applying topological data analysis to local search problems. Foundations of Data Science, 2022 doi: 10.3934/fods.2022006 |
[15] |
Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 |
[16] |
Ariosto Silva, Alexander R. A. Anderson, Robert Gatenby. A multiscale model of the bone marrow and hematopoiesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 643-658. doi: 10.3934/mbe.2011.8.643 |
[17] |
Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449 |
[18] |
Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic and Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023 |
[19] |
Jochen Abhau, Oswin Aichholzer, Sebastian Colutto, Bernhard Kornberger, Otmar Scherzer. Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data. Inverse Problems and Imaging, 2013, 7 (1) : 1-25. doi: 10.3934/ipi.2013.7.1 |
[20] |
Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53. |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]