Advanced Search
Article Contents
Article Contents

Evolutionary de Rham-Hodge method

  • Corresponding author: Yiying Tong

    Corresponding author: Yiying Tong; 

    Corresponding author: Yiying Tong* Corresponding author: Guo-Wei Wei

    * Corresponding author: Guo-Wei Wei

This work was supported in part by NSF Grants DMS1721024, DMS1761320, IIS1900473, NIH grants GM126189 and GM129004, Bristol-Myers Squibb and Pfizer. GWW thanks Vidit Nanda for useful discussion

Abstract Full Text(HTML) Figure(19) / Table(3) Related Papers Cited by
  • The de Rham-Hodge theory is a landmark of the 20$ ^\text{th} $ Century's mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the potential of the proposed paradigm for data representation and shape analysis of both point cloud data and density maps. To demonstrate the utility of the proposed method, the application is considered to the protein B-factor predictions of a few challenging cases for which existing biophysical models break down.

    Mathematics Subject Classification: Primary:53Z10, 53Z50;Secondary:14F40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Discrete de Rham cohomology; $ D_k $ is the combinatorial operators such that $ {D}_{k+1}{D}_{k} = 0 $; $ {S}_k $ is the discrete Hodge stars

    Figure 2.  Illustration of normal and tangential harmonic field extensions. Thick lines are the inputs and thin lines are the extended outputs. Left charts in both (a) and (b) show harmonic fields and their extensions while right charts give meticulous detail of interior parts. (a) Normal harmonic forms. A solid ball with a cavity extends inward to a solid ball without cavity. The outside surface is fixed. (b) Tangential harmonic forms. A torus extends to a solid ball

    Figure 3.  Persistence and progression on benzene

    Figure 4.  Snapshots of evolving manifold with the two-body system. a, b, c and d are snapshots from the beginning to the end. b and c show the transition of the Betti-0 number from 2 to 1

    Figure 5.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the two-body system with $ \eta = 1.19 $ and $ \max(\rho)\approx 1.0 $. i shows the smallest eigenvalues of the $ T $ set. The drops at $ c = 0.6 $ correspond to snapshots in Figs. 4 b and c. ii and iii show the smallest eigenvalues of the $ C $ and $ N $ sets respectively

    Figure 6.  Snapshots of evolving manifolds with the four-body system. a is the initial point of four components; b and c show the transition of a ring formed and the persistent Betti-0 number changes from 4 to 1. g and h show the vanishing of the ring and the persistent Betti-1 number changes from 1 to 0.

    Figure 7.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the four-body system with $ \eta = 1.19 $ and $ \max(\rho)\approx 1.2 $. i shows the smallest eigenvalues of the $ T $ set. At near $ c = 0.80 $, the persistent Betti-0 number changes from 4 to 1. ii shows the smallest eigenvalues of the $ C $ set. At around $ c = 1.02 $, the persistent Betti-1 number changes from 1 to 0. iii shows the smallest eigenvalues of the $ N $ set

    Figure 8.  Snapshots of evolving manifold with the eight-body system. a presents the initial state with eight components. b and c show the formation of 6 tunnels when the persistent Betti-0 number changes from 8 to 1 and the persistent Betti-1 number changes from 0 to 5. d and e illustrate that a cavity appears, so the persistent Betti-1 number drops to 0 and the persistent Betti-2 number increases to 1. f shows a solid volume without cavity. The gray planes cut manifolds to create cross-section views to illustrate the process of the formation of cavity as shown in b', c', d' and e'

    Figure 9.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the eight-body system with $ \eta = 1.53 $ and $ \max(\rho)\approx1.1 $. i shows the Fiedler values of the $ T $ set and persistent Betti-0 numbers. ii shows the Fiedler values of the $ C $ set and persistent Betti-1 numbers. iii illustrates the comparison of $ \lambda_{l,1}^C $ and persistent $ \beta_2 $

    Figure 10.  Manifold evolution of benzene with $ \eta = 0.45\times r_{\rm vdw} $. a through h are snapshots from the start to the end. a and b show the transition of the persistent Betti-0 number from 12 to 6. c and d show the formation of a ring; The Betti-0 number changes from 6 to 1 and remains at one to the end, whereas the Betti-1 number changes from zero to one. d, e, f and g illustrate the deformation of the hexagonal tunnel to a round tunnel. From g to h, the ring disappears and the Betti-1 number changes from 1 back to 0

    Figure 11.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the benzene system with $ \eta = 0.45 $ and $ \max(\rho)\approx1.1 $. i shows the smallest eigenvalues of the $ T $ set. The drops at $ c = 0.12 $ correspond to snapshots in Figs. 10 a and b. The drops at $ c = 0.22 $ correspond to snapshots in Figs. 10 c and d. ii shows the smallest eigenvalue of the $ N $ set. The drops at $ c = 0.9 $ correspond to snapshots in Figs. 10 g and h. iii shows the smallest eigenvalues of the $ C $ set

    Figure 12.  Illustration of fullurene ($ \text{C}_{60} $) manifold evolution with $ \eta = 0.5\times r_{\rm vdw} $. a presents sixty components around carbon atom positions. a and b show that the components connect if they share a pentagonal hole and persistent $ \beta_0 $ changes from 60 to 12 and persistent $ \beta_1 $ changes from 0 to 12. c shows the hexagonal holes are formed, resulting in the change of persistent $ \beta_0 $ to 1 and persistent $ \beta_1 $ to 31. (There are 32 rings, but only 31 are independent in terms of homology.) c and d show that the 12 pentagonal rings disappear and the persistent Betti-1 number drops from 31 to 19. d and e show that the 20 hexagonal rings disappear and a cavity forms inside, so that persistent $ \beta_1 $ drops to $ 0 $ and persistent $ \beta_2 $ increases to 1. The vertical plan cuts the manifolds that gives an illustration of cavity in d' and e'

    Figure 13.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the fullurene ($ \text{C}_{60} $) system with $ \eta = 0.5\times r_{\rm vdw} $ and $ \max(\rho)\approx1.3 $. i gives the Fiedler values of the $ T $ set and persistent $ \beta_0 $. ii presents the comparison of $ \lambda^C_{l,1} $ and persistent $ \beta_1 $. iii shows the Fiedler values of the $ N $ set and persistent $ \beta_2 $

    Figure 14.  Illustration of fullurene ($ \text{C}_{60} $) manifold evolution with $ \eta = 0.8\times r_{\rm vdw} $. a shows 12 initial solid pentagonal components. b and c show the formation and contraction process of the 20 rings. d is the snapshot right after the formation of the cavity. e shows the final stage as a solid ball of this example

    Figure 15.  Eigenvalues and Betti numbers vs isovalue ($ c $) of the fullurene ($ \text{C}_{60} $) system with $ \eta = 0.8\times r_{\rm vdw} $; $ \max{\rho}\approx2.5 $. i gives the Fiedler values of the $ T $ set and persistent $ \beta_0 $. ii presents the comparison of $ \lambda^C_{l,1} $ and persistent $ \beta_1 $. iii shows the Fiedler values of the $ N $ set and persistent $ \beta_2 $

    Figure 16.  Experimental and predicted B-factor values plotted per residue (PDB IDs: 1CLL, 2HQK and 1V70). EXP: experimental values; EDH: evolutionary de Rham-Hodge (10 isovalues) method predicted values; GNM: Gaussian network method predicted values

    Figure 17.  The structure of calmodulin (PDB ID: 1CLL) visualized in Visual Molecular Dynamics (VMD) [33] and colored by experimental B-factors (left), EDH (10 isovalues) predict B-factors (middle) and GNM predicted B-factors (right) with red representing the most flexible regions

    Figure 18.  Illustration of surfaces extracted with different isovalues for EMD-1776. The isovalues for a, b, c and d are 0.14, 0.10, 0.07 and 0.04, respectively. In a, $ \beta_0 $ is 12 and $ \beta_1 $ and $ \beta_2 $ are 0; In b, $ \beta_0 = 4 $, $ \beta_1 = 4 $ and $ \beta_2 = 0 $; In c, $ \beta_0 = 1 $, $ \beta_1 = 13 $ and $ \beta_2 = 0 $; In d, $ \beta_0 = 1 $, $ \beta_1 = 9 $ and $ \beta_2 = 0 $

    Figure 19.  Eigenvalues and Betti numbers vs filtration of the EMD-1776 density map. The filtration goes from 2.68 (the largest isovalue (0.28) subtract by 0.14) to 2.78 (the largest isovalue (0.28) subtract by 0.04). i gives the Fiedler values of the $ T $ set and persistent $ \beta_0 $. ii presents the comparison of $ \lambda^C_{l,1} $ and persistent $ \beta_1 $. iii shows the Fiedler values of the $ N $ set and persistent $ \beta_2 $

    Table 1.  Exterior (odd rows) vs. traditional (even rows) calculus in $ \mathbb{R}^3 $. $ f^0 $, $ {\bf{v}}^1 $, $ {\bf{v}}^2 $ and $ f^3 $ stand for $ 0 $-, $ 1 $-, $ 2 $- and $ 3 $-forms with their components stored in either a scalar field $ f $ or vector field $ {\bf{v}} $

    order $ 0 $ order $ 1 $ order $ 2 $ order $ 3 $
    form $ f^0 $ $ {\bf{v}}^1({\bf{a}}) $ $ {\bf{v}}^2({\bf{a}},{\bf{b}}) $ $ f^3({\bf{a}},{\bf{b}},{\bf{c}}) $
    $ f $ $ {\bf{v}}\cdot {\bf{a}} $ $ {\bf{v}}\cdot({\bf{a}}\times{\bf{b}}) $ $ f[({\bf{a}}\times{\bf{b}})\cdot{\bf{c}}] $
    $ d $ $ df^0 $ $ d {\bf{v}}^1 $ $ d {\bf{v}}^2 $ $ d f^3 $
    $ (\nabla f)^1 $ $ (\nabla \times {\bf{v}})^2 $ $ (\nabla \cdot {\bf{v}})^3 $ $ 0 $
    $ \star $ $ \star f^0 $ $ \star {\bf{v}}^1 $ $ \star {\bf{v}}^2 $ $ \star f^3 $
    $ f^3 $ $ {\bf{v}}^2 $ $ {\bf{v}}^1 $ $ f^0 $
    $ \delta $ $ \delta f^0 $ $ \delta {\bf{v}}^1 $ $ \delta {\bf{v}}^2 $ $ \delta f^3 $
    $ 0 $ $ (- \nabla \cdot {\bf{v}})^0 $ $ (\nabla \times {\bf{v}})^1 $ $ (-\nabla f)^2 $
    $ \wedge $ $ f^0\!\wedge\! g^0 $ $ f^0\!\wedge\!{\bf{v}}^1 $ $ f^0\!\wedge\!{\bf{v}}^2 $, $ {\bf{v}}^1\!\wedge\!{\bf{u}}^1 $ $ f^0\!\wedge\!g^3 $, $ {\bf{v}}^1\!\wedge\!{\bf{u}}^2 $
    $ (fg)^0 $ $ (f{\bf{v}})^1 $ $ (f{\bf{v}})^2 $, $ ({\bf{v}}\!\times\!{\bf{u}})^2 $ $ (fg)^3 $, $ ({\bf{v}}\cdot{\bf{u}})^3 $
     | Show Table
    DownLoad: CSV

    Table 2.  Boundary conditions of tangential and normal form

    type $ f^0 $ $ {\bf{v}}^1 $ $ {\bf{v}}^2 $ $ f^3 $
    tangential unrestricted $ {\bf{v}}\cdot {\bf{n}} = 0 $ $ {\bf{v}} \parallel {\bf{n}} $ $ f|_{\partial M} = 0 $
    normal $ f|_{\partial M} = 0 $ $ {\bf{v}} \parallel {\bf{n}} $ $ {\bf{v}} \cdot {\bf{n}}=0 $ unrestricted
     | Show Table
    DownLoad: CSV

    Table 3.  Pearson correlation coefficients in B-factor predictions using GNM, mGNM and EDH for four proteins. Here, mGNM stands for multiscale GNM with two different kernels [70]. $ N_{C^\alpha} $ is the number of residues. In cases of EDH, three different isovalue sets are applied with 10, 20 and 40 points of equal spaces on the interval of [$ 0.1, 1.0 $]

    PDB ID $ N_{C^\alpha} $ GNM[70] mGNM[70] EDH (10) EDH (20) EDH (40)
    1CLL 292 0.261 0.763 0.789 0.797 0.850
    1V70 105 0.162 0.750 0.754 0.772 0.858
    2HQK 216 0.365 0.833 0.854 0.880 0.886
    1WHI 122 0.270 0.484 0.640 0.711 0.794
     | Show Table
    DownLoad: CSV
  • [1] M. Akram and V. Michel, Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.  doi: 10.1007/s13137-010-0001-y.
    [2] D. N. ArnoldR. S. Falk and R. Winther, Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.  doi: 10.1017/S0962492906210018.
    [3] A. R. AtilganS. DurellR. L. JerniganM. C. DemirelO. Keskin and I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.  doi: 10.1016/S0006-3495(01)76033-X.
    [4] I. BaharA. R. Atilgan and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.  doi: 10.1016/S1359-0278(97)00024-2.
    [5] P. W. BatesG.-W. Wei and S. Zhao, Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.  doi: 10.1002/jcc.20796.
    [6] P. BendichH. Edelsbrunner and M. Kerber, Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.  doi: 10.1109/TVCG.2010.139.
    [7] D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103. doi: 10.1063/1.5016562.
    [8] Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929. doi: 10.1371/journal.pcbi.1005929.
    [9] Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015). doi: 10.1515/mlbmb-2015-0009.
    [10] Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27.
    [11] Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690. doi: 10.1371/journal.pcbi.1005690.
    [12] Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914. doi: 10.1002/cnm.2914.
    [13] G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256. doi: 10.1145/1542362.1542408.
    [14] G. CarlssonT. IshkhanovV. De Silva and A. Zomorodian, On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.  doi: 10.1007/s11263-007-0056-x.
    [15] T. Cecil, A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.  doi: 10.1016/j.jcp.2004.12.022.
    [16] Z. ChenN. A. Baker and G.-W. Wei, Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.  doi: 10.1007/s00285-011-0402-z.
    [17] S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169. doi: 10.1137/1.9781611975031.75.
    [18] V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342. doi: 10.15607/RSS.2005.I.044.
    [19] M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324. doi: 10.1007/978-3-7643-8621-4_16.
    [20] B. Di Fabio and C. Landi, A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.  doi: 10.1007/s10208-011-9100-x.
    [21] Q. DuC. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.  doi: 10.1016/j.jcp.2004.01.029.
    [22] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010.
    [23] H. EdelsbrunnerD. Letscher and  A. ZomorodianTopological persistence and simplification, in Proceedings 41st Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.  doi: 10.1109/SFCS.2000.892133.
    [24] N. Foster and D. Metaxas, Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.  doi: 10.1006/gmip.1996.0039.
    [25] K. O. Friedrichs, Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.  doi: 10.1002/cpa.3160080408.
    [26] P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603. 
    [27] P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301. doi: 10.1007/978-3-642-23672-3_36.
    [28] M. GameiroY. HiraokaS. IzumiM. KramarK. Mischaikow and V. Nanda, A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.  doi: 10.1007/s13160-014-0153-5.
    [29] H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097. doi: 10.1109/ICASSP.2010.5495348.
    [30] J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13.
    [31] T. HazraS. A. UllahS. WangE. Alexov and S. Zhao, A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.  doi: 10.1007/s00285-019-01372-1.
    [32] W. V. D. HodgeThe Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989. 
    [33] W. HumphreyA. Dalke and K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.  doi: 10.1016/0263-7855(96)00018-5.
    [34] D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp. doi: 10.1088/1742-5468/2009/03/p03034.
    [35] M. Kac, Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.  doi: 10.1080/00029890.1966.11970915.
    [36] T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004. doi: 10.1007/b97315.
    [37] V. Kovacev-NikolicP. BubenikD. Nikolić and G. Heo, Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.  doi: 10.1515/sagmb-2015-0057.
    [38] H. LeeH. KangM. K. ChungB.-N. Kim and D. S. Lee, Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277. 
    [39] A. LeisB. RockelL. Andrees and W. Baumeister, Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.  doi: 10.1016/j.tibs.2008.10.011.
    [40] N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp.
    [41] Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15.
    [42] K. Mikula and D. Sevcovic, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.  doi: 10.1002/mma.514.
    [43] K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144. doi: 10.1103/PhysRevLett.82.1144.
    [44] Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6. doi: 10.1109/IVCNZ.2009.5378430.
    [45] D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304. doi: 10.1021/acs.jcim.9b00334.
    [46] D. D. NguyenZ. CangK. WuM. WangY. Cao and G.-W. Wei, Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.  doi: 10.1007/s10822-018-0146-6.
    [47] D. D. NguyenK. GaoM. Wang and G.-W. Wei, MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.  doi: 10.1007/s10822-019-00237-5.
    [48] D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179. doi: 10.1002/cnm.3179.
    [49] D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106. doi: 10.1063/1.4953851.
    [50] S. NickellC. KoflerA. P. Leis and W. Baumeister, A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.  doi: 10.1038/nrm1861.
    [51] P. NiyogiS. Smale and S. Weinberger, A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.  doi: 10.1137/090762932.
    [52] K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101. doi: 10.1063/1.4922045.
    [53] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.  doi: 10.1016/0021-9991(88)90002-2.
    [54] J. PeschekN. BraunT. M. FranzmannY. GeorgalisM. HaslbeckS. Weinkauf and J. Buchner, The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277. 
    [55] D. PachauriC. HinrichsM. K. ChungS. C. Johnson and V. Singh, Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.  doi: 10.1109/TMI.2011.2147327.
    [56] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.  doi: 10.1016/0001-8708(71)90045-4.
    [57] C. V. RobinsonA Sali and W. Baumeister, The molecular sociology of the cell, Nature, 450 (2007), 973-982.  doi: 10.1038/nature06523.
    [58] V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532.
    [59] C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967.
    [60] G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp.
    [61] C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117. doi: 10.1007/978-3-0348-0257-4_4.
    [62] L. E.-J. Spruck, Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.
    [63] Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452. doi: 10.1145/1201775.882290.
    [64] B. WangB. SummaV. Pascucci and M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911. 
    [65] L. WangL. Li and E. Alexov, pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197. 
    [66] B. Wang and G.-W. Wei, Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.  doi: 10.1016/j.jcp.2015.10.036.
    [67] R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376. doi: 10.1002/cnm.3376.
    [68] G.-W. Wei, Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.  doi: 10.1007/s11538-010-9511-x.
    [69] T. J. WillmoreAn Introduction to Differential Geometry, Clarendon Press, Oxford, 2013. 
    [70] K. XiaX. FengZ. ChenY. Tong and G.-W. Wei, Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.  doi: 10.1016/j.jcp.2013.09.034.
    [71] K. XiaX. FengY. Tong and G. W. Wei, Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.  doi: 10.1002/jcc.23816.
    [72] K. Xia and G.-W. Wei, Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.  doi: 10.1002/cnm.2655.
    [73] K. Xia and G.-W. Wei, Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.  doi: 10.1002/jcc.23953.
    [74] Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115. doi: 10.1063/1.3103496.
    [75] S. Zelditch, Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.  doi: 10.1007/PL00001633.
    [76] R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp. doi: 10.1145/3355089.3356546.
    [77] R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108. doi: 10.1007/s11538-020-00783-2.
    [78] A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.  doi: 10.1007/s00454-004-1146-y.
  • 加载中




Article Metrics

HTML views(742) PDF downloads(558) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint