[1]
|
M. Akram and V. Michel, Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.
doi: 10.1007/s13137-010-0001-y.
|
[2]
|
D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018.
|
[3]
|
A. R. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.
doi: 10.1016/S0006-3495(01)76033-X.
|
[4]
|
I. Bahar, A. R. Atilgan and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.
doi: 10.1016/S1359-0278(97)00024-2.
|
[5]
|
P. W. Bates, G.-W. Wei and S. Zhao, Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.
doi: 10.1002/jcc.20796.
|
[6]
|
P. Bendich, H. Edelsbrunner and M. Kerber, Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.
doi: 10.1109/TVCG.2010.139.
|
[7]
|
D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103.
doi: 10.1063/1.5016562.
|
[8]
|
Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929.
doi: 10.1371/journal.pcbi.1005929.
|
[9]
|
Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015).
doi: 10.1515/mlbmb-2015-0009.
|
[10]
|
Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27.
|
[11]
|
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690.
doi: 10.1371/journal.pcbi.1005690.
|
[12]
|
Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914.
doi: 10.1002/cnm.2914.
|
[13]
|
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256.
doi: 10.1145/1542362.1542408.
|
[14]
|
G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian, On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.
doi: 10.1007/s11263-007-0056-x.
|
[15]
|
T. Cecil, A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.
doi: 10.1016/j.jcp.2004.12.022.
|
[16]
|
Z. Chen, N. A. Baker and G.-W. Wei, Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.
doi: 10.1007/s00285-011-0402-z.
|
[17]
|
S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169.
doi: 10.1137/1.9781611975031.75.
|
[18]
|
V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342.
doi: 10.15607/RSS.2005.I.044.
|
[19]
|
M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324.
doi: 10.1007/978-3-7643-8621-4_16.
|
[20]
|
B. Di Fabio and C. Landi, A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.
doi: 10.1007/s10208-011-9100-x.
|
[21]
|
Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.
doi: 10.1016/j.jcp.2004.01.029.
|
[22]
|
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010.
|
[23]
|
H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simplification, in Proceedings 41st Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.
doi: 10.1109/SFCS.2000.892133.
|
[24]
|
N. Foster and D. Metaxas, Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.
doi: 10.1006/gmip.1996.0039.
|
[25]
|
K. O. Friedrichs, Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.
doi: 10.1002/cpa.3160080408.
|
[26]
|
P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603.
|
[27]
|
P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301.
doi: 10.1007/978-3-642-23672-3_36.
|
[28]
|
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda, A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.
doi: 10.1007/s13160-014-0153-5.
|
[29]
|
H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097.
doi: 10.1109/ICASSP.2010.5495348.
|
[30]
|
J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13.
|
[31]
|
T. Hazra, S. A. Ullah, S. Wang, E. Alexov and S. Zhao, A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.
doi: 10.1007/s00285-019-01372-1.
|
[32]
|
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989.
|
[33]
|
W. Humphrey, A. Dalke and K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.
doi: 10.1016/0263-7855(96)00018-5.
|
[34]
|
D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp.
doi: 10.1088/1742-5468/2009/03/p03034.
|
[35]
|
M. Kac, Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.
doi: 10.1080/00029890.1966.11970915.
|
[36]
|
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004.
doi: 10.1007/b97315.
|
[37]
|
V. Kovacev-Nikolic, P. Bubenik, D. Nikolić and G. Heo, Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.
doi: 10.1515/sagmb-2015-0057.
|
[38]
|
H. Lee, H. Kang, M. K. Chung, B.-N. Kim and D. S. Lee, Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277.
|
[39]
|
A. Leis, B. Rockel, L. Andrees and W. Baumeister, Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.
doi: 10.1016/j.tibs.2008.10.011.
|
[40]
|
N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp.
|
[41]
|
Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15.
|
[42]
|
K. Mikula and D. Sevcovic, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.
doi: 10.1002/mma.514.
|
[43]
|
K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144.
doi: 10.1103/PhysRevLett.82.1144.
|
[44]
|
Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6.
doi: 10.1109/IVCNZ.2009.5378430.
|
[45]
|
D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304.
doi: 10.1021/acs.jcim.9b00334.
|
[46]
|
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei, Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6.
|
[47]
|
D. D. Nguyen, K. Gao, M. Wang and G.-W. Wei, MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.
doi: 10.1007/s10822-019-00237-5.
|
[48]
|
D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179.
doi: 10.1002/cnm.3179.
|
[49]
|
D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106.
doi: 10.1063/1.4953851.
|
[50]
|
S. Nickell, C. Kofler, A. P. Leis and W. Baumeister, A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.
doi: 10.1038/nrm1861.
|
[51]
|
P. Niyogi, S. Smale and S. Weinberger, A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.
doi: 10.1137/090762932.
|
[52]
|
K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101.
doi: 10.1063/1.4922045.
|
[53]
|
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2.
|
[54]
|
J. Peschek, N. Braun, T. M. Franzmann, Y. Georgalis, M. Haslbeck, S. Weinkauf and J. Buchner, The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277.
|
[55]
|
D. Pachauri, C. Hinrichs, M. K. Chung, S. C. Johnson and V. Singh, Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.
doi: 10.1109/TMI.2011.2147327.
|
[56]
|
D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.
doi: 10.1016/0001-8708(71)90045-4.
|
[57]
|
C. V. Robinson, A Sali and W. Baumeister, The molecular sociology of the cell, Nature, 450 (2007), 973-982.
doi: 10.1038/nature06523.
|
[58]
|
V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532.
|
[59]
|
C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967.
|
[60]
|
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp.
|
[61]
|
C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117.
doi: 10.1007/978-3-0348-0257-4_4.
|
[62]
|
L. E.-J. Spruck, Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559.
|
[63]
|
Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452.
doi: 10.1145/1201775.882290.
|
[64]
|
B. Wang, B. Summa, V. Pascucci and M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911.
|
[65]
|
L. Wang, L. Li and E. Alexov, pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197.
|
[66]
|
B. Wang and G.-W. Wei, Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.
doi: 10.1016/j.jcp.2015.10.036.
|
[67]
|
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376.
doi: 10.1002/cnm.3376.
|
[68]
|
G.-W. Wei, Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.
doi: 10.1007/s11538-010-9511-x.
|
[69]
|
T. J. Willmore, An Introduction to Differential Geometry, Clarendon Press, Oxford, 2013.
|
[70]
|
K. Xia, X. Feng, Z. Chen, Y. Tong and G.-W. Wei, Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.
doi: 10.1016/j.jcp.2013.09.034.
|
[71]
|
K. Xia, X. Feng, Y. Tong and G. W. Wei, Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.
doi: 10.1002/jcc.23816.
|
[72]
|
K. Xia and G.-W. Wei, Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.
doi: 10.1002/cnm.2655.
|
[73]
|
K. Xia and G.-W. Wei, Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.
doi: 10.1002/jcc.23953.
|
[74]
|
Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115.
doi: 10.1063/1.3103496.
|
[75]
|
S. Zelditch, Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.
doi: 10.1007/PL00001633.
|
[76]
|
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp.
doi: 10.1145/3355089.3356546.
|
[77]
|
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108.
doi: 10.1007/s11538-020-00783-2.
|
[78]
|
A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y.
|