doi: 10.3934/dcdsb.2020258

Convergence of quasilinear parabolic equations to semilinear equations

1. 

Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa - PB, Brazil

2. 

Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG, Brazil

* Corresponding author: Jacson Simsen

Received  April 2020 Revised  July 2020 Published  August 2020

Fund Project: J. Simsen was partially supported by the Brazilian research agency FAPEMIG - Process PPM 00329-16

In this work we consider a family of reaction-diffusion equations with variable exponents reaching as a limit problem a semilinear equation. We provide uniform estimates for the solutions and we prove that the solutions of the family of quasilinear equations with variable exponents converge to the solution of a limit semilinear equation when the exponents go to 2. Moreover, the robustness of the global attractors is also studied.

Citation: Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020258
References:
[1]

C. AlvesS. ShmarevJ. Simsen and M. S. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.  doi: 10.1016/j.jmaa.2016.05.024.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[3]

F. BezerraJ. Simsen and M. S. Simsen, Semilinear limit problems for reaction-diffusion equations with variable exponents, J. Differential Equations, 266 (2019), 3906-3924.  doi: 10.1016/j.jde.2018.09.021.  Google Scholar

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981.  Google Scholar

[5]

J. Simsen and M. S. Simsen, On $p(x)$-Laplacian parabolic problems, Nonlinear Stud., 18 (2011), 393-403.   Google Scholar

[6]

J. SimsenM. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents, Nonlinear Stud., 21 (2014), 113-128.   Google Scholar

[7]

J. SimsenM. S. Simsen and M. R. T. Primo, Reaction-diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506.  doi: 10.3934/cpaa.2016.15.495.  Google Scholar

[8]

J. SimsenM. S. Simsen and A. Zimmermann, Study of ODE limit problems for reaction-diffusion equations, Opuscula Math., 38 (2018), 117-131.  doi: 10.7494/OpMath.2018.38.1.117.  Google Scholar

[9]

A. S. Tersenov, The one dimensional parabolic $p(x)-$Laplace equation, NoDEA, 23 (2016), 1-11.  doi: 10.1007/s00030-016-0377-y.  Google Scholar

show all references

References:
[1]

C. AlvesS. ShmarevJ. Simsen and M. S. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.  doi: 10.1016/j.jmaa.2016.05.024.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[3]

F. BezerraJ. Simsen and M. S. Simsen, Semilinear limit problems for reaction-diffusion equations with variable exponents, J. Differential Equations, 266 (2019), 3906-3924.  doi: 10.1016/j.jde.2018.09.021.  Google Scholar

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981.  Google Scholar

[5]

J. Simsen and M. S. Simsen, On $p(x)$-Laplacian parabolic problems, Nonlinear Stud., 18 (2011), 393-403.   Google Scholar

[6]

J. SimsenM. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents, Nonlinear Stud., 21 (2014), 113-128.   Google Scholar

[7]

J. SimsenM. S. Simsen and M. R. T. Primo, Reaction-diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506.  doi: 10.3934/cpaa.2016.15.495.  Google Scholar

[8]

J. SimsenM. S. Simsen and A. Zimmermann, Study of ODE limit problems for reaction-diffusion equations, Opuscula Math., 38 (2018), 117-131.  doi: 10.7494/OpMath.2018.38.1.117.  Google Scholar

[9]

A. S. Tersenov, The one dimensional parabolic $p(x)-$Laplace equation, NoDEA, 23 (2016), 1-11.  doi: 10.1007/s00030-016-0377-y.  Google Scholar

[1]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[2]

Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1485-1510. doi: 10.3934/dcdsb.2018217

[3]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[4]

Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015

[5]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[6]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[7]

Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101

[8]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[9]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[10]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[12]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[13]

Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, , () : -. doi: 10.3934/era.2020100

[14]

Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201

[15]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[16]

Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114

[17]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[18]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[19]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[20]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020252

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (16)
  • HTML views (33)
  • Cited by (0)

[Back to Top]