[1]
|
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.
|
[2]
|
G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation, Archive for Rational Mechanics and Analysis, 197 (2010), 1033-1051.
doi: 10.1007/s00205-010-0309-7.
|
[3]
|
S. Cai and Y. Watanabe, A computer-assisted method for the diblock copolymer model, Zeitschrift für Angewandte Mathematik und Mechanik, 99 (2019), e201800125, 14pp.
doi: 10.1002/zamm.201800125.
|
[4]
|
L. Chierchia, KAM lectures, in Dynamical Systems. Part I, Scuola Normale Superiore, Pisa, Italy, 2003, 1–55.
|
[5]
|
R. Choksi, M. Maras and J. F. Williams, 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions, SIAM Journal on Applied Dynamical Systems, 10 (2011), 1344-1362.
doi: 10.1137/100784497.
|
[6]
|
R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM Journal on Applied Mathematics, 69 (2009), 1712-1738.
doi: 10.1137/080728809.
|
[7]
|
R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), 151-176.
doi: 10.1023/A:1025722804873.
|
[8]
|
R. Choksi and X. Ren, Diblock copolymer/homopolymer blends: Derivation of a density functional theory, Physica D, 203 (2005), 100-119.
doi: 10.1016/j.physd.2005.03.006.
|
[9]
|
J. Cyranka and T. Wanner, Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model, SIAM Journal on Applied Dynamical Systems, 17 (2018), 694-731.
doi: 10.1137/17M111938X.
|
[10]
|
S. Day, J.-P. Lessard and K. Mischaikow, Validated continuation for equilibria of PDEs, SIAM Journal on Numerical Analysis, 45 (2007), 1398-1424.
doi: 10.1137/050645968.
|
[11]
|
J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707-743.
doi: 10.1137/100801378.
|
[12]
|
A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, Association for Computing Machinery. Transactions on Mathematical Software, 29 (2003), 141-164.
doi: 10.1145/779359.779362.
|
[13]
|
E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, in Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), 30 (1981), 265–284.
|
[14]
|
M. Gameiro, J.-P. Lessard and K. Mischaikow, Validated continuation over large parameter ranges for equilibria of PDEs, Mathematics and Computers in Simulation, 79 (2008), 1368-1382.
doi: 10.1016/j.matcom.2008.03.014.
|
[15]
|
Z. G. Huseynov and A. M. Shykhammedov, On bases of sines and cosines in Sobolev spaces, Applied Mathematics Letters, 25 (2012), 275-278.
doi: 10.1016/j.aml.2011.08.026.
|
[16]
|
I. Johnson, E. Sander and T. Wanner, Branch interactions and long-term dynamics for the diblock copolymer model in one dimension, Discrete and Continuous Dynamical Systems. Series A, 33 (2013), 3671-3705.
doi: 10.3934/dcds.2013.33.3671.
|
[17]
|
T. Kinoshita, Y. Watanabe and M. T. Nakao, An alternative approach to norm bound computation for inverses of linear operators in Hilbert spaces, Journal of Differential Equations, 266 (2019), 5431-5447.
doi: 10.1016/j.jde.2018.10.027.
|
[18]
|
J.-P. Lessard, E. Sander and T. Wanner, Rigorous continuation of bifurcation points in the diblock copolymer equation, Journal of Computational Dynamics, 4 (2017), 71-118.
doi: 10.3934/jcd.2017003.
|
[19]
|
S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Revista Matematica Complutense, 21 (2008), 351-426.
doi: 10.5209/rev_REMA.2008.v21.n2.16380.
|
[20]
|
S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square, International Journal of Bifurcation and Chaos, 17 (2007), 1221-1263.
doi: 10.1142/S0218127407017781.
|
[21]
|
S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Archive for Rational Mechanics and Analysis, 151 (2000), 187-219.
doi: 10.1007/s002050050196.
|
[22]
|
T. R. Muradov and V. F. Salmanov, On the basis property of trigonometric systems with linear phase in a weighted Sobolev space, Dokl. Math., 90 (2014), 611-612.
doi: 10.1134/s1064562414060301.
|
[23]
|
M. T. Nakao, M. Plum and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations, Springer-Verlag, Berlin, 2019.
doi: 10.1007/978-981-13-7669-6.
|
[24]
|
T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.
doi: 10.1021/ma00164a028.
|
[25]
|
M. Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems, Journal of Computational and Applied Mathematics, 60 (1995), 187-200.
doi: 10.1016/0377-0427(94)00091-E.
|
[26]
|
M. Plum, Enclosures for two-point boundary value problems near bifurcation points, in Scientific Computing and Validated Numerics (Wuppertal, 1995), vol. 90 of Mathematical Research, Akademie Verlag, Berlin, 1996,265–279.
|
[27]
|
M. Plum, Computer-assisted proofs for semilinear elliptic boundary value problems, Japan Journal of Industrial and Applied Mathematics, 26 (2009), 419-442.
doi: 10.1007/BF03186542.
|
[28]
|
S. M. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Computing (ed. T. Csendes), Kluwer Academic Publishers, Dordrecht, 1999, 77–104, http://www.ti3.tuhh.de/rump/.
|
[29]
|
S. M. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica, 19 (2010), 287-449.
doi: 10.1017/S096249291000005X.
|
[30]
|
E. Sander and T. Wanner, Validated saddle-node bifurcations and applications to lattice dynamical systems, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1690-1733.
doi: 10.1137/16M1061011.
|
[31]
|
L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press, Princeton, NJ, 2005.
|
[32]
|
J. B. van den Berg and J. F. Williams, Validation of the bifurcation diagram in the 2D Ohta-Kawasaki problem, Nonlinearity, 30 (2017), 1584-1638.
doi: 10.1088/1361-6544/aa60e8.
|
[33]
|
J. B. van den Berg and J. F. Williams, Optimal periodic structures with general space group symmetries in the Ohta-Kawasaki problem, arXiv: 1912.00059.
|
[34]
|
J. B. van den Berg and J. F. Williams, Rigorously computing symmetric stationary states of the Ohta-Kawasaki problem in three dimensions, SIAM Journal on Mathematical Analysis, 51 (2019), 131-158.
doi: 10.1137/17M1155624.
|
[35]
|
T. Wanner, Topological analysis of the diblock copolymer equation, in Mathematical Challenges in a New Phase of Materials Science (eds. Y. Nishiura and M. Kotani), vol. 166 of Springer Proceedings in Mathematics & Statistics, Springer-Verlag, 2016, 27–51.
doi: 10.1007/978-4-431-56104-0_2.
|
[36]
|
T. Wanner, Computer-assisted equilibrium validation for the diblock copolymer model, Discrete and Continuous Dynamical Systems, Series A, 37 (2017), 1075-1107.
doi: 10.3934/dcds.2017045.
|
[37]
|
T. Wanner, Computer-assisted bifurcation diagram validation and applications in materials science, Proceedings of Symposia in Applied Mathematics, 74 (2018), 123-174.
|
[38]
|
T. Wanner, Validated bounds on embedding constants for Sobolev space Banach algebras, Mathematical Methods in the Applied Sciences, 41 (2018), 9361-9376.
doi: 10.1002/mma.5294.
|
[39]
|
Y. Watanabe, T. Kinoshita and M. T. Nakao, An improved method for verifying the existence and bounds of the inverse of second-order linear elliptic operators mapping to dual space, Japan Journal of Industrial and Applied Mathematics, 36 (2019), 407-420.
doi: 10.1007/s13160-019-00344-8.
|
[40]
|
Y. Watanabe, K. Nagatou, M. Plum and M. T. Nakao, Norm bound computation for inverses of linear operators in Hilbert spaces, Journal of Differential Equations, 260 (2016), 6363-6374.
doi: 10.1016/j.jde.2015.12.041.
|
[41]
|
N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem, SIAM Journal on Numerical Analysis, 35 (1998), 2004-2013.
doi: 10.1137/S0036142996304498.
|
[42]
|
N. Yamamoto, M. T. Nakao and Y. Watanabe, A theorem for numerical verification on local uniqueness of solutions to fixed-point equations, Numerical Functional Analysis and Optimization, 32 (2011), 1190-1204.
doi: 10.1080/01630563.2011.594348.
|