[1]
|
M. Ali, S. Hameed and M. Tahir, Luteovirus: Insights into pathogenicity, Archives of Virology, 159 (2014), 2853-2860.
doi: 10.1007/s00705-014-2172-6.
|
[2]
|
R. Antia, B. R. Levin and R. M. May, Within-host population dynamics and the evolution and maintenance of microparasite virulence, The American Naturalist, 144 (1994), 457-472.
doi: 10.1086/285686.
|
[3]
|
F. Atkinson and J. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations, Journal of Mathematical Analysis and Applications, 91 (1983), 410-423.
doi: 10.1016/0022-247X(83)90161-0.
|
[4]
|
J. Bak, D. J. Newman and D. J. Newman, Complex Analysis, Springer, 2010.
doi: 10.1007/978-1-4419-7288-0.
|
[5]
|
Y. M. Bar-On, R. Phillips and R. Milo, The biomass distribution on earth, Proceedings of the National Academy of Sciences, 115 (2018), 6506-6511.
doi: 10.1073/pnas.1711842115.
|
[6]
|
M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiology & Infection, 129 (2002), 147-153.
doi: 10.1017/S0950268802007148.
|
[7]
|
C. Bendix and J. D. Lewis, The enemy within: Phloem-limited pathogens, Molecular Plant Pathology, 19 (2018), 238-254.
doi: 10.1111/mpp.12526.
|
[8]
|
E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76.
doi: 10.1016/S0025-5564(97)10015-3.
|
[9]
|
E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Analysis. Real World Applications, 2 (2001), 35-74.
doi: 10.1016/S0362-546X(99)00285-0.
|
[10]
|
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086.
|
[11]
|
P. Bernardo, T. Charles-Dominique, M. Barakat, P. Ortet, E. Fernandez, D. Filloux, P. Hartnady, T. A. Rebelo, S. R. Cousins, F. Mesleard et al., Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale, The ISME Journal, 12 (2018), 173-184.
doi: 10.1038/ismej.2017.155.
|
[12]
|
E. T. Borer, A.-L. Laine and E. W. Seabloom, A multiscale approach to plant disease using the metacommunity concept, Annual Review of Phytopathology, 54 (2016), 397-418.
doi: 10.1146/annurev-phyto-080615-095959.
|
[13]
|
J. C. Carrington, K. D. Kasschau, S. K. Mahajan and M. C. Schaad, Cell-to-cell and long-distance transport of viruses in plants., The Plant Cell, 8 (1996), 1669.
|
[14]
|
R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of hiv-1 that includes a time delay, Journal of Mathematical Biology, 46 (2003), 425-444.
doi: 10.1007/s00285-002-0191-5.
|
[15]
|
C. J. D'Arcy and P. A. Burnett, Barley Yellow Dwarf: 40 Years of Progress, 1995.
|
[16]
|
V. Eastop, Worldwide importance of aphids as virus vectors, in Aphids as Virus Vectors, Elsevier, 1977, 3–62.
doi: 10.1016/B978-0-12-327550-9.50006-9.
|
[17]
|
S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of hbv infection with logistic hepatocyte growth, Math. Biosc. Eng, 6 (2009), 283-299.
doi: 10.3934/mbe.2009.6.283.
|
[18]
|
G. F. Gause, The Struggle for Existence: A Classic of Mathematical Biology and Ecology, Courier Dover Publications, 2019.
|
[19]
|
M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, Journal of theoretical biology, 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015.
|
[20]
|
C. Gill and J. Chong, Cytopathological evidence for the division of barley yellow dwarf virus isolates into two subgroups, Virology, 95 (1979), 59-69.
doi: 10.1016/0042-6822(79)90401-X.
|
[21]
|
S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis b virus infection, Journal of Biological Dynamics, 2 (2008), 140-153.
doi: 10.1080/17513750701769873.
|
[22]
|
Z. Grossman, M. B. Feinberg and W. E. Paul, Multiple modes of cellular activation and virus transmission in hiv infection: a role for chronically and latently infected cells in sustaining viral replication, Proceedings of the National Academy of Sciences, 95 (1998), 6314-6319.
doi: 10.1073/pnas.95.11.6314.
|
[23]
|
S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis b viral infection model with logistic hepatocyte growth, Journal of Mathematical Biology, 60 (2010), 573-590.
doi: 10.1007/s00285-009-0278-3.
|
[24]
|
S.-B. Hsu, T.-W. Hwang and Y. Kuang, Global analysis of the michaelis–menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506.
doi: 10.1007/s002850100079.
|
[25]
|
M. Jackson and B. M. Chen-Charpentier, Modeling plant virus propagation with delays, Journal of Computational and Applied Mathematics, 309 (2017), 611-621.
doi: 10.1016/j.cam.2016.04.024.
|
[26]
|
A. E. Kendig, E. T. Borer, E. N. Boak, T. C. Picard and E. W. Seabloom, Soil nitrogen and phosphorus effects on plant virus density, transmission, and species interactions, URLhttps://doi.org/10.6073/pasta/01e7bf593676a942f262623710acba13.
|
[27]
|
D. A. Kennedy, V. Dukic and G. Dwyer, Pathogen growth in insect hosts: Inferring the importance of different mechanisms using stochastic models and response-time data, The American Naturalist, 184 (2014), 407-423.
doi: 10.1086/677308.
|
[28]
|
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator–prey system, Journal of Mathematical Biology, 36 (1998), 389-406.
doi: 10.1007/s002850050105.
|
[29]
|
P. Kumberger, K. Durso-Cain, S. Uprichard, H. Dahari and F. Graw, Accounting for space–quantification of cell-to-cell transmission kinetics using virus dynamics models, Viruses, 10 (2018), 200.
doi: 10.3390/v10040200.
|
[30]
|
C. Lacroix, E. W. Seabloom and E. T. Borer, Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses, New Phytologist, 204 (2014), 424-433.
doi: 10.1111/nph.12909.
|
[31]
|
C. Lacroix, E. W. Seabloom and E. T. Borer, Environmental nutrient supply directly alters plant traits but indirectly determines virus growth rate, Frontiers in Microbiology, 8 (2017), 2116.
doi: 10.3389/fmicb.2017.02116.
|
[32]
|
P. Lefeuvre, D. P. Martin, S. F. Elena, D. N. Shepherd, P. Roumagnac and A. Varsani, Evolution and ecology of plant viruses, Nature Reviews Microbiology, 17 (2019), 632-644.
doi: 10.1038/s41579-019-0232-3.
|
[33]
|
R. F. Luck, Evaluation of natural enemies for biological control: A behavioral approach, Trends in Ecology & Evolution, 5 (1990), 196-199.
doi: 10.1016/0169-5347(90)90210-5.
|
[34]
|
G. Neofytou, Y. Kyrychko and K. Blyuss, Mathematical model of plant-virus interactions mediated by rna interference, Journal of Theoretical Biology, 403 (2016), 129-142.
doi: 10.1016/j.jtbi.2016.05.018.
|
[35]
|
J. C. Ng and K. L. Perry, Transmission of plant viruses by aphid vectors, Molecular Plant Pathology, 5 (2004), 505-511.
doi: 10.1111/j.1364-3703.2004.00240.x.
|
[36]
|
M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis b virus infection, Proceedings of the National Academy of Sciences, 93 (1996), 4398-4402.
doi: 10.1073/pnas.93.9.4398.
|
[37]
|
B. Pell, A. E. Kendig, E. T. Borer and Y. Kuang, Modeling nutrient and disease dynamics in a plant-pathogen system 2, Mathematical Biosciences and Engineering, 16 (2019), 234-264.
|
[38]
|
M. J. Roossinck and E. R. Bazán, Symbiosis: Viruses as intimate partners, Annual Review of Virology, 4 (2017), 123-139.
doi: 10.1146/annurev-virology-110615-042323.
|
[39]
|
M. J. Roossinck, P. Saha, G. B. Wiley, J. Quan, J. D. White, H. Lai, F. Chavarria, G. Shen and B. A. Roe, Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology, Molecular Ecology, 19 (2010), 81-88.
doi: 10.1111/j.1365-294X.2009.04470.x.
|
[40]
|
M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385-387.
doi: 10.1126/science.171.3969.385.
|
[41]
|
A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo and D. Baltimore, Cell-to-cell spread of hiv permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95-98.
doi: 10.1038/nature10347.
|
[42]
|
A. L. Vuorinen, J. Kelloniemi and J. P. Valkonen, Why do viruses need phloem for systemic invasion of plants?, Plant Science, 181 (2011), 355-363.
doi: 10.1016/j.plantsci.2011.06.008.
|
[43]
|
X. Wang, S. Tang, X. Song and L. Rong, Mathematical analysis of an hiv latent infection model including both virus-to-cell infection and cell-to-cell transmission, Journal of Biological Dynamics, 11 (2017), 455-483.
doi: 10.1080/17513758.2016.1242784.
|
[44]
|
Z. Wu, T. Phan, J. Baez, Y. Kuang and E. J. Kostelich, Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy, Mathematical Biosciences and Engineering, 16 (2019), 3512-3536.
|
[45]
|
Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Mathematical Biosciences, 270 (2015), 183-191.
doi: 10.1016/j.mbs.2015.05.001.
|
[46]
|
P. Zhong, L. M. Agosto, J. B. Munro and W. Mothes, Cell-to-cell transmission of viruses, Current Opinion in Virology, 3 (2013), 44-50.
doi: 10.1016/j.coviro.2012.11.004.
|