[1]
|
S. Busenberg and K. L. Cooke, Models of vertically transmitted diseases with sequential-continuous dynamics, Nonlinear Phenomena in Mathematical Sciences, (1982), 179-187.
|
[2]
|
M. Chen, M. Fan, C. B. Xie, A. Peace and H. Wang, Stoichiometric food chain model on discrete time scale, Mathematical Biosciences and Engineering, 16 (2018), 101-118.
|
[3]
|
M. Chen, L. Asik and A. Peace, Stoichiometric knife-edge model on discrete time scale, Advances in Difference Equations, 2019 (2019), 1-16.
doi: 10.1186/s13662-019-2468-7.
|
[4]
|
K. L. Cooke and J. Wiener, Retarded differential equations with piecewise constant delays, Journal of Mathematical Analysis and Applications, 99 (1984), 265-297.
doi: 10.1016/0022-247X(84)90248-8.
|
[5]
|
M. Fan, I. Loladze, Y. Kuang and J. J. Elser, Dynamics of a stoichiometric discrete producer-grazer model, Journal of Difference Equations and Applications, 11 (2005), 347-364.
doi: 10.1080/10236190412331335427.
|
[6]
|
R. Frankham and B. W. Brook, The importance of time scale in conservation biology and ecology, Annales Zoologici Fennici, 41 (2004), 459-463.
|
[7]
|
W. Gurney and R. M. Nisbet, Ecological Dynamics, 1998.
|
[8]
|
J. J. Elser, M. Kyle, J. Learned, M. McCrackin, A. Peace and L. Steger, Life on the stoichiometric knife-edge: Effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species, Inland Waters, 6 (2016), 136-146.
doi: 10.5268/IW-6.2.908.
|
[9]
|
Y. Kuang, J. Huisman and J. J. Elser, Stoichiometric plant-herbivore models and their interpretation, Mathematical Biosciences and Engineering, 1 (2004), 215-222.
doi: 10.3934/mbe.2004.1.215.
|
[10]
|
I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling, Bulletin of Mathematical Biology, 62 (2000), 1137-1162.
doi: 10.1006/bulm.2000.0201.
|
[11]
|
I. Loladze, Y. Kuang, J. J. Elser and W. F. Fagan, Competition and stoichiometry: Coexistence of two predators on one prey, Theoretical Population Biology, 65 (2004), 1-15.
doi: 10.1016/S0040-5809(03)00105-9.
|
[12]
|
A. Peace, Y. Zhao, I. Loladze, J. J. Elser and Y. Kuang, A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics, Mathematical Biosciences, 244 (2013), 107-115.
doi: 10.1016/j.mbs.2013.04.011.
|
[13]
|
A. Peace, H. Wang and Y. Kuang, Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer's growth, Bulletin of Mathematical Biology, 76 (2014), 2175-2197.
doi: 10.1007/s11538-014-0006-z.
|
[14]
|
A. Peace, Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models, Ecological Modelling, 312 (2015), 125-135.
doi: 10.1016/j.ecolmodel.2015.05.019.
|
[15]
|
A. Peace and H. Wang, Compensatory foraging in stoichiometric producer-grazer models, Bulletin of Mathematical Biology, 81 (2019), 4932-4950.
doi: 10.1007/s11538-019-00665-2.
|
[16]
|
G. H. Pyke, H. R. Pulliam and E. L. Charnov, Optimal Foraging: A selective review of theory and tests, Quarterly Review of Biology, 52 (1977), 137-154.
|
[17]
|
S. J. Simpson, R. M. Sibly, K. P. Lee, S. T. Behmer and D. Raubenheimer, Optimal foraging when regulating intake of multiple nutrients, Animal Behaviour, 68 (2004), 1299-1311.
doi: 10.1016/j.anbehav.2004.03.003.
|
[18]
|
R. W. Sterner and J. J. Elser, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton University Press, 2002.
doi: 10.1515/9781400885695.
|
[19]
|
G. Sui, M. Fan, I. Loladze and Y. Kuang, The dynamics of a stoichiometric plant-herbivore model and its discrete analog, Mathematical Biosciences and Engineering, 4 (2007), 29-46.
doi: 10.3934/mbe.2007.4.29.
|
[20]
|
H. Wang, Y. Kuang and I. Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model, Journal of Biological Dynamics, 2 (2008), 286-296.
doi: 10.1080/17513750701769881.
|
[21]
|
H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive exclusion, and chaotic coexistence, Discrete & Continuous Dynamical Systems-B, 12 (2009), 481-493.
doi: 10.3934/dcdsb.2009.12.481.
|
[22]
|
H. Wang, R. W. Sterner and J. J. Elser, On the "strict homeostasis" assumption in ecological stoichiometry, Ecological Modelling, 243 (2012), 81-88.
doi: 10.1016/j.ecolmodel.2012.06.003.
|
[23]
|
H. Wang, Z. Lu and A. Raghavan, Weak dynamical threshold for the "strict homeostasis" assumption in ecological stoichiometry, Ecological Modelling, 384 (2018), 233-240.
doi: 10.1016/j.ecolmodel.2018.06.027.
|
[24]
|
C. Xie, M. Fan and W. Zhao, Dynamics of a discrete stoichiometric two predators one prey model, Journal of Biological Systems, 18 (2010), 649-667.
doi: 10.1142/S0218339010003457.
|