doi: 10.3934/dcdsb.2020266

Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  April 2019 Revised  May 2020 Published  September 2020

Fund Project: This work is partially supported by NSF of Chongqing Grant No. cstc2018jcyjA0897, the FRF for the Central Universities Grant No. XDJK2020B049 and K.C. Wong Education Foundation and DAAD

In this paper, we obtain the existence and uniqueness of weak pullback mean random attractors for non-autonomous deterministic $ p $-Laplacian equations with random initial data and non-autonomous stochastic $ p $-Laplacian equations with general diffusion terms in Bochner spaces, respectively.

Citation: Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020266
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

W.-J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Commun. Partial Differ. Equ., 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and B. Schmalfuss, Existence of exponetially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.  doi: 10.3934/dcds.2007.18.271.  Google Scholar

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[6]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[7]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[8]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Equat., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[10]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151.   Google Scholar

[11]

B. Fehrman and B. Gess, Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, Arch. Rational Mech. Anal., 233 (2019), 249–322. doi: 10.1007/s00205-019-01357-w.  Google Scholar

[12]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[13]

H. GaoM. J. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 46 (2014), 2281-2309.  doi: 10.1137/130930662.  Google Scholar

[14]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 473–493. doi: 10.3934/dcdsb.2010.14.473.  Google Scholar

[15]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dyn. Diff. Equat., 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[16]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parametes $H\in (1/3, 1/2]$, SIAM J. Appl. Dyn. Syst., 15 (2016), 625–654. doi: 10.1137/15M1030303.  Google Scholar

[17]

B. GessW. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253.  doi: 10.1016/j.jde.2011.02.013.  Google Scholar

[18]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Diff. Equat., 25 (2013), 121-157.  doi: 10.1007/s10884-013-9294-5.  Google Scholar

[19]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559.  doi: 10.1016/j.jde.2013.04.023.  Google Scholar

[20]

A. Gu, Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5737–5767. doi: 10.3934/dcdsb.2019104.  Google Scholar

[21]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.  Google Scholar

[22]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on ${\mathbb R}^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[23]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689–1720. doi: 10.3934/dcdsb.2018072.  Google Scholar

[24]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[25]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A. Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[26]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[27]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[28]

P. Lindqvist, Notes on the $p$-Laplace Equation, 2006. Available from: http://www.math.ntnu.no/ lqvist/p-laplace.pdf.  Google Scholar

[29]

J.-L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.  Google Scholar

[30]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[31]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[32]

J. Málek, J. Nečas, M. Rokyta and M. R$\rm\mathring{u}$zička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996.  Google Scholar

[33]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 2007.  Google Scholar

[34]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185-192, Dresden, 1992. Google Scholar

[35]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, 1997.  Google Scholar

[37]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[38]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on ${\mathbb R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[39]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[40]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 1–31. doi: 10.1142/S0219493714500099.  Google Scholar

[41]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dyn. Diff. Equat., 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.  Google Scholar

[42]

B. Wang, Weak pullback attractors for stochastic Navier-Stokes equations with nonlinear diffusion terms, Proc. Amer. Math. Soc., 147 (2019), 1627-1638.  doi: 10.1090/proc/14356.  Google Scholar

[43]

B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part, Electron. J. Differ. Eq., (2013), No. 191, 25 pp.  Google Scholar

[44]

S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in ${\mathbb R}^3$, J. Differential Equations, 263 (2017), 6347-6383.  doi: 10.1016/j.jde.2017.07.013.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[3]

W.-J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Commun. Partial Differ. Equ., 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and B. Schmalfuss, Existence of exponetially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.  doi: 10.3934/dcds.2007.18.271.  Google Scholar

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[6]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[7]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[8]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Equat., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[10]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151.   Google Scholar

[11]

B. Fehrman and B. Gess, Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, Arch. Rational Mech. Anal., 233 (2019), 249–322. doi: 10.1007/s00205-019-01357-w.  Google Scholar

[12]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[13]

H. GaoM. J. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 46 (2014), 2281-2309.  doi: 10.1137/130930662.  Google Scholar

[14]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 473–493. doi: 10.3934/dcdsb.2010.14.473.  Google Scholar

[15]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dyn. Diff. Equat., 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[16]

M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parametes $H\in (1/3, 1/2]$, SIAM J. Appl. Dyn. Syst., 15 (2016), 625–654. doi: 10.1137/15M1030303.  Google Scholar

[17]

B. GessW. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253.  doi: 10.1016/j.jde.2011.02.013.  Google Scholar

[18]

B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Diff. Equat., 25 (2013), 121-157.  doi: 10.1007/s10884-013-9294-5.  Google Scholar

[19]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559.  doi: 10.1016/j.jde.2013.04.023.  Google Scholar

[20]

A. Gu, Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5737–5767. doi: 10.3934/dcdsb.2019104.  Google Scholar

[21]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.  Google Scholar

[22]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on ${\mathbb R}^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[23]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689–1720. doi: 10.3934/dcdsb.2018072.  Google Scholar

[24]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[25]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A. Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[26]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[27]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[28]

P. Lindqvist, Notes on the $p$-Laplace Equation, 2006. Available from: http://www.math.ntnu.no/ lqvist/p-laplace.pdf.  Google Scholar

[29]

J.-L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.  Google Scholar

[30]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[31]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[32]

J. Málek, J. Nečas, M. Rokyta and M. R$\rm\mathring{u}$zička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996.  Google Scholar

[33]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 2007.  Google Scholar

[34]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185-192, Dresden, 1992. Google Scholar

[35]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[36]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, 1997.  Google Scholar

[37]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[38]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on ${\mathbb R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[39]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[40]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 1–31. doi: 10.1142/S0219493714500099.  Google Scholar

[41]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dyn. Diff. Equat., 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.  Google Scholar

[42]

B. Wang, Weak pullback attractors for stochastic Navier-Stokes equations with nonlinear diffusion terms, Proc. Amer. Math. Soc., 147 (2019), 1627-1638.  doi: 10.1090/proc/14356.  Google Scholar

[43]

B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part, Electron. J. Differ. Eq., (2013), No. 191, 25 pp.  Google Scholar

[44]

S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in ${\mathbb R}^3$, J. Differential Equations, 263 (2017), 6347-6383.  doi: 10.1016/j.jde.2017.07.013.  Google Scholar

[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[6]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[7]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[8]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[9]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[10]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[11]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[12]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[13]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[16]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]