July  2021, 26(7): 3879-3903. doi: 10.3934/dcdsb.2020267

A class of stochastic Fredholm-algebraic equations and applications in finance

1. 

School of Economics, Sichuan University, Chengdu 610065, China

2. 

School of Mathematics, Sichuan University, Chengdu 610065, China

*Corresponding author: The research was supported by the NSF of China under grant 11971332 and 11931011

Received  October 2019 Revised  July 2020 Published  July 2021 Early access  September 2020

A class of stochastic Fredholm-algebraic equations (SFAEs) is introduced and investigated. Like backward stochastic differential equations (BSDEs), its solution includes two parts. The interesting thing is that the first part is deterministic and constrained, even though the whole system is stochastic. Our study is mainly motivated by risk indifference pricing problem. Actually, the existing risk indifference price always keeps unchangeable with respect to initial wealth, which is economically unsatisfying. Nevertheless, here a new wealth dependent risk indifference price is proposed by particular SFAEs.

Citation: Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267
References:
[1]

P. Barrieu and N. El Karoui, Pricing, hedging and optimally designing derivatives via minimization of risk measures, Indifference Pricing: Theory and Applications. Princeton University Press, (2008), Princeton, USA.

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Rev. Finan. Stud., 23 (2010), 2970-3016.  doi: 10.1093/rfs/hhq028.

[3]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[4]

C. Borell, Monotonicity properties of optimal investment strategies for log-Brownian asset prices, Math. Finance, 17 (2007), 143-153.  doi: 10.1111/j.1467-9965.2007.00297.x.

[5]

Ł. Delong, Optimal investment for insurance company with exponential utility and wealth-dependent risk aversion coefficient, Math. Method. Oper. Res., 89 (2019), 73-113.  doi: 10.1007/s00186-019-00659-9.

[6]

Ł. Delong and P. Imkeller P, Backward stochastic differential equations with time delayed generators-results and counterexamples, Ann. Appl. Probab., 20 (2010), 1512-1536.  doi: 10.1214/09-AAP663.

[7]

Ł. Delong and P. Imkeller, On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures, Stochastic Process. Appl., 120 (2010), 1748-1775.  doi: 10.1016/j.spa.2010.05.001.

[8]

Y. Dong and R. Sircar, Time-Inconsistent Portfolio Investment Problems, In: Crisan D., Hambly B., Zariphopoulou T. (eds), Stochastic Analysis and Applications 2014,239-281. Springer Proceedings in Mathematics Statistics, vol 100. 2014, Springer, Cham. doi: 10.1007/978-3-319-11292-3_9.

[9]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[10]

R. J. Elliott and T. K. Siu, Risk-based indifference pricing under a stochastic volatility model, Commun. Stoch. Anal., 4 (2010), 51-73.  doi: 10.31390/cosa.4.1.05.

[11]

R. J. Elliott and T. K. Siu, A BSDE approach to a risk-based optimal investment of an insurer, Automatica, 47 (2011), 253-261.  doi: 10.1016/j.automatica.2010.10.032.

[12]

V. Henderson and D. Hobson, Utility indifference pricing-an overview, In Volume on Indifference Pricing, (ed. R. Carmona), (2004), Princeton University Press.

[13]

E. Karni, Risk aversion for state-dependent utility functions: Measurement and applications, Int. Econ. Review, 24 (1983), 637-647.  doi: 10.2307/2648791.

[14]

S. Klöppel and M. Schweizer, Dynamic Utility Indifference Valuation via Convex Risk Measures, Nccr Finrisk working paper No. 209, (2005), ETH Zürich.

[15]

S. Klöppel and M. Schweizer, Dynamic indifference valuation via convex risk measures, Math. Finance, 17 (2007), 599-627.  doi: 10.1111/j.1467-9965.2007.00317.x.

[16]

D. Kramkov and M. Sirbu, Sensitivity analysis of utility based prices and risk- tolerance wealth processes, Ann. Appl. Probab., 16 (2006), 2140-2194.  doi: 10.1214/105051606000000529.

[17]

D. Kramkov and M. Sirbu, Asymptotic analysis of utility-based hedging strategies for small number of contingent claims, Stochastic Process Appl., 117 (2007), 1606-1620.  doi: 10.1016/j.spa.2007.04.014.

[18]

J. P. Lepeltier and J. San Martin., Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), 425–430. doi: 10.1016/S0167-7152(96)00103-4.

[19]

J. Li and Q. Wei, Optimal control problem of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 52 (2014), 1622–1662. doi: 10.1137/100816778.

[20]

B. Øksendal and A. Sulem, Risk indifference pricing in jump diffusion markets, Math. Finance 19 (2009), 619–637. doi: 10.1111/j.1467-9965.2009.00382.x.

[21]

B. Øksendal and A. Sulem, Portfolio optimization under model uncertainty and BSDE games, Quant. Finance 11 (2011), 1665–1674. doi: 10.1080/14697688.2011.615219.

[22]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), 55–61. doi: 10.1016/0167-6911(90)90082-6.

[23]

E. Rosazza Gianin, Risk measures via g-expectations, Insurance Math. Econom., 39 (2006), 19–34. doi: 10.1016/j.insmatheco.2006.01.002.

[24]

H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations, to appear in Appl. Math. Optim. (2020). doi: 10.1007/s00245-019-09641-7.

[25]

T. Wang and J. Yong, Comparison theorems for some backward stochastic Volterra integral equations, Stochastic Process. Appl. 125 (2015), 1756–1798. doi: 10.1016/j.spa.2014.11.013.

[26]

T. Wang and H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574-2602.  doi: 10.1137/16M1059801.

[27]

T. Wang and J. Yong, Backward stochastic Volterra integral equations–representaton of adpated solutions, Stochastic Process. Appl., 129 (2019), 4926–4964. doi: 10.1016/j.spa.2018.12.016.

[28]

Z. Wu and Z. Yu, Probabilistic interpretation for a system of quasilinear parabolic partial differential equations combined with algebra equations, Stochastic Process. Appl. 124 (2014), 3921–3947. doi: 10.1016/j.spa.2014.07.013.

[29]

J. Xia, Risk aversion and portfolio selection in a continuous-time model, SIAM J. Control Optim, 49 (2011), 1916–1937. doi: 10.1137/10080871X.

[30]

M. Xu, Risk measure pricing and hedging in incomplete markets, Ann. Financ. 2 (2006), 51–71. doi: 10.1007/s10436-005-0023-x.

[31]

J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Appl. Anal., 86 (2007), 1429–1442. doi: 10.1080/00036810701697328.

[32]

J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory. Related Fields, 142 (2008), 21–77. doi: 10.1007/s00440-007-0098-6.

show all references

References:
[1]

P. Barrieu and N. El Karoui, Pricing, hedging and optimally designing derivatives via minimization of risk measures, Indifference Pricing: Theory and Applications. Princeton University Press, (2008), Princeton, USA.

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Rev. Finan. Stud., 23 (2010), 2970-3016.  doi: 10.1093/rfs/hhq028.

[3]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[4]

C. Borell, Monotonicity properties of optimal investment strategies for log-Brownian asset prices, Math. Finance, 17 (2007), 143-153.  doi: 10.1111/j.1467-9965.2007.00297.x.

[5]

Ł. Delong, Optimal investment for insurance company with exponential utility and wealth-dependent risk aversion coefficient, Math. Method. Oper. Res., 89 (2019), 73-113.  doi: 10.1007/s00186-019-00659-9.

[6]

Ł. Delong and P. Imkeller P, Backward stochastic differential equations with time delayed generators-results and counterexamples, Ann. Appl. Probab., 20 (2010), 1512-1536.  doi: 10.1214/09-AAP663.

[7]

Ł. Delong and P. Imkeller, On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures, Stochastic Process. Appl., 120 (2010), 1748-1775.  doi: 10.1016/j.spa.2010.05.001.

[8]

Y. Dong and R. Sircar, Time-Inconsistent Portfolio Investment Problems, In: Crisan D., Hambly B., Zariphopoulou T. (eds), Stochastic Analysis and Applications 2014,239-281. Springer Proceedings in Mathematics Statistics, vol 100. 2014, Springer, Cham. doi: 10.1007/978-3-319-11292-3_9.

[9]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[10]

R. J. Elliott and T. K. Siu, Risk-based indifference pricing under a stochastic volatility model, Commun. Stoch. Anal., 4 (2010), 51-73.  doi: 10.31390/cosa.4.1.05.

[11]

R. J. Elliott and T. K. Siu, A BSDE approach to a risk-based optimal investment of an insurer, Automatica, 47 (2011), 253-261.  doi: 10.1016/j.automatica.2010.10.032.

[12]

V. Henderson and D. Hobson, Utility indifference pricing-an overview, In Volume on Indifference Pricing, (ed. R. Carmona), (2004), Princeton University Press.

[13]

E. Karni, Risk aversion for state-dependent utility functions: Measurement and applications, Int. Econ. Review, 24 (1983), 637-647.  doi: 10.2307/2648791.

[14]

S. Klöppel and M. Schweizer, Dynamic Utility Indifference Valuation via Convex Risk Measures, Nccr Finrisk working paper No. 209, (2005), ETH Zürich.

[15]

S. Klöppel and M. Schweizer, Dynamic indifference valuation via convex risk measures, Math. Finance, 17 (2007), 599-627.  doi: 10.1111/j.1467-9965.2007.00317.x.

[16]

D. Kramkov and M. Sirbu, Sensitivity analysis of utility based prices and risk- tolerance wealth processes, Ann. Appl. Probab., 16 (2006), 2140-2194.  doi: 10.1214/105051606000000529.

[17]

D. Kramkov and M. Sirbu, Asymptotic analysis of utility-based hedging strategies for small number of contingent claims, Stochastic Process Appl., 117 (2007), 1606-1620.  doi: 10.1016/j.spa.2007.04.014.

[18]

J. P. Lepeltier and J. San Martin., Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), 425–430. doi: 10.1016/S0167-7152(96)00103-4.

[19]

J. Li and Q. Wei, Optimal control problem of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 52 (2014), 1622–1662. doi: 10.1137/100816778.

[20]

B. Øksendal and A. Sulem, Risk indifference pricing in jump diffusion markets, Math. Finance 19 (2009), 619–637. doi: 10.1111/j.1467-9965.2009.00382.x.

[21]

B. Øksendal and A. Sulem, Portfolio optimization under model uncertainty and BSDE games, Quant. Finance 11 (2011), 1665–1674. doi: 10.1080/14697688.2011.615219.

[22]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), 55–61. doi: 10.1016/0167-6911(90)90082-6.

[23]

E. Rosazza Gianin, Risk measures via g-expectations, Insurance Math. Econom., 39 (2006), 19–34. doi: 10.1016/j.insmatheco.2006.01.002.

[24]

H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations, to appear in Appl. Math. Optim. (2020). doi: 10.1007/s00245-019-09641-7.

[25]

T. Wang and J. Yong, Comparison theorems for some backward stochastic Volterra integral equations, Stochastic Process. Appl. 125 (2015), 1756–1798. doi: 10.1016/j.spa.2014.11.013.

[26]

T. Wang and H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574-2602.  doi: 10.1137/16M1059801.

[27]

T. Wang and J. Yong, Backward stochastic Volterra integral equations–representaton of adpated solutions, Stochastic Process. Appl., 129 (2019), 4926–4964. doi: 10.1016/j.spa.2018.12.016.

[28]

Z. Wu and Z. Yu, Probabilistic interpretation for a system of quasilinear parabolic partial differential equations combined with algebra equations, Stochastic Process. Appl. 124 (2014), 3921–3947. doi: 10.1016/j.spa.2014.07.013.

[29]

J. Xia, Risk aversion and portfolio selection in a continuous-time model, SIAM J. Control Optim, 49 (2011), 1916–1937. doi: 10.1137/10080871X.

[30]

M. Xu, Risk measure pricing and hedging in incomplete markets, Ann. Financ. 2 (2006), 51–71. doi: 10.1007/s10436-005-0023-x.

[31]

J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Appl. Anal., 86 (2007), 1429–1442. doi: 10.1080/00036810701697328.

[32]

J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory. Related Fields, 142 (2008), 21–77. doi: 10.1007/s00440-007-0098-6.

[1]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial and Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[2]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[3]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[4]

Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5

[5]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[6]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[7]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[8]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[9]

Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285

[10]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[11]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control and Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[12]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[13]

Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047

[15]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[16]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control and Related Fields, 2022, 12 (2) : 343-370. doi: 10.3934/mcrf.2021025

[17]

Ying Liu, Yabing Sun, Weidong Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 773-795. doi: 10.3934/dcdss.2021044

[18]

Yushi Hamaguchi. Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems. Mathematical Control and Related Fields, 2021, 11 (2) : 433-478. doi: 10.3934/mcrf.2020043

[19]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[20]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (235)
  • HTML views (311)
  • Cited by (0)

Other articles
by authors

[Back to Top]