\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the reducibility of a class of almost periodic Hamiltonian systems

The authors are supported by NSFC grant 11526177 and the Natural Science Foundations for Colleges and Universities in Jiangsu Province grant 18KJB110029.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper we consider the following linear almost periodic hamiltonian system

    $ \dot{x} = (A+\varepsilon Q(t, \varepsilon))x, \; x\in R^{2}, $

    where $ A $ is a constant matrix with different eigenvalues, and $ Q(t, \varepsilon) $ is analytic almost periodic with respect to $ t $ and analytic with respect to $ \varepsilon $. Without any non-degeneracy condition, we prove that the linear hamiltonian system is reducible for most of sufficiently small parameter $ \varepsilon $ by an almost periodic symplectic mapping.

    Mathematics Subject Classification: 37J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. N. Bogoljubov, J. A. Mitropoliski and A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, Springer-Verlag, New York, 1976.
    [2] L. H. Eliasson, Floquent solutions for the one-dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447–482. doi: 10.1007/BF02097013.
    [3] H.-L. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dyn. Differ. Equ., 20 (2008), 831–866. doi: 10.1007/s10884-008-9113-6.
    [4] R. A. Johnson and G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems, J. Dyn. Differ. Equ., 41 (1981), 262–288. doi: 10.1016/0022-0396(81)90062-0.
    [5] A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, 98 (1992), 111–124. doi: 10.1016/0022-0396(92)90107-X.
    [6] A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704–1737. doi: 10.1137/S0036141094276913.
    [7] J. Li and C. Zhu, On the reducibility of a class of finitely differentiable quasi-periodic linear systems, J. Math. Anal. Appl., 413 (2014), 69–83. doi: 10.1016/j.jmaa.2013.10.077.
    [8] J. Li, C. Zhu and S. Chen, On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near the equilibrium, Qual. Theory Dyn. Syst., 16 (2017), 127–147. doi: 10.1007/s12346-015-0164-x.
    [9] J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 127 (1990), 351–393. doi: 10.1007/BF02096763.
    [10] H. Rüssmann, Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergodic Theor. Dyn. Syst., 24 (2004), 1787–1832. doi: 10.1017/S0143385703000774.
    [11] X. Wang and J. Xu, On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal., 69 (2008), 2318–2329. doi: 10.1016/j.na.2007.08.016.
    [12] H. Whitney, Analytical extensions of differentiable functions defined in closed sets, Trans. A. M. S., 36 (1934), 63–89. doi: 10.1090/S0002-9947-1934-1501735-3.
    [13] J. Xu and J. You, On reducibility of linear differential equations with almost-periodic coefficients, Chinese Ann. Math. A(in Chinese), 17 (1996), 607–616.
    [14] J. Xu, On the reducibility of a class of linear differential equations with quasiperiodic coefficients, Mathematika, 46 (1999), 443–451. doi: 10.1112/S0025579300007907.
    [15] J. Xu and X. Lu, On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergodic Theor. Dyn. Syst., 35 (2015), 2334–2352. doi: 10.1017/etds.2014.31.
    [16] J. Xu, K. Wang and M. Zhu, On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters, P. Am. Math. Soc., 144 (2016), 4793–4805. doi: 10.1090/proc/13088.
    [17] L. Zhang and J. Xu, Persistence of invariant tori in Hamiltonian systems with two-degree of freedom, J. Math. Anal. Appl., 338 (2008), 793-802. doi: 10.1016/j.jmaa.2007.05.052.
  • 加载中
SHARE

Article Metrics

HTML views(2054) PDF downloads(232) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return