[1]
|
H. Amann, Dynamical theory of quasilinear parabolic equations III: Global existence, Math. Z., 202 (1989), 219-250.
doi: 10.1007/BF01215256.
|
[2]
|
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In: Function spaces, differential operators and nonlinear analysis, (Friedrichroda, 1992), vol 133. Teubner-Texte zur Mathematik. Teubner, Stuttgart, 1993, pp. 9–126.
doi: 10.1007/978-3-663-11336-2_1.
|
[3]
|
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.
doi: 10.2307/3866.
|
[4]
|
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.
|
[5]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models of infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[6]
|
V. Doceul, M. Hollinshead, L. van der Linden and G. L. Smith, Repulsion of superinfecting virions: A mechanism for rapid virus spread, Science, 327 (2010), 873-876.
doi: 10.1126/science.1183173.
|
[7]
|
G. Huang, W. Ma and T. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 24 (2011), 1199-1203.
doi: 10.1016/j.aml.2011.02.007.
|
[8]
|
X. Lai and X. Zou, Repulsion effect on superinfecting virions by infected cells, Bull. Math. Biol., 76 (2014), 2806-2833.
doi: 10.1007/s11538-014-0033-9.
|
[9]
|
H. Li and M. Ma, Global dynamics of a virus infection model with repulsive effect, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4783-4797.
doi: 10.3934/dcdsb.2019030.
|
[10]
|
Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8.
|
[11]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[12]
|
M. G. Neubert and I. M. Parker, Projecting rates of spread for invasive species, Risk Anal., 24 (2004), 817-831.
doi: 10.1111/j.0272-4332.2004.00481.x.
|
[13]
|
S. Pankavich and C. Parkinson, Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1237-1257.
doi: 10.3934/dcdsb.2016.21.1237.
|
[14]
|
M. H. Protter and H. Weinberger, Maximum Principles in Differential Equations, Spring-Verlag, 1984.
doi: 10.1007/978-1-4612-5282-5.
|
[15]
|
X. Ren, Y. Tian, L. Liu and X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831-1872.
doi: 10.1007/s00285-017-1202-x.
|
[16]
|
H. L. Smith., Monotone dynamic systems: An introduction to the theory of competitive and cooperative systems, Math Surveys Monogr, vol 41. American Mathematical Society, Providence, RI, 1995.
|
[17]
|
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[18]
|
S. Tang, Z. Teng and H. Miao, Global dynamics of a reaction-diffusion virus infection model with humoral immunity and nonlinear incidence, Comput. Math. Appl., 78 (2019), 786-806.
doi: 10.1016/j.camwa.2019.03.004.
|
[19]
|
F.-B. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329.
doi: 10.1080/00036811.2014.955797.
|
[20]
|
W. Wang, W. Ma and Z. Feng, Complex dynamics of a time periodic nonlocal and time-delayed model of reaction-diffusion equations for modelling CD4+ T cells decline, J. Comput. Appl. Math., 367 (2020), 112430, 29 pp.
doi: 10.1016/j.cam.2019.112430.
|
[21]
|
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.
|
[22]
|
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic model, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.
|
[23]
|
W. Wang and X.-Q. Zhao, Spatial invasion threshold of lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.
doi: 10.1137/140981769.
|
[24]
|
W. Wang and T. Zhang, Caspase-1-mediated pyroptosis of the predominance for driving CD4+ T cells death: A nonlocal spatial mathematical model, Bull. Math. Biol., 80 (2018), 540-582.
doi: 10.1007/s11538-017-0389-8.
|
[25]
|
Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal. RWA, 15 (2014), 118-139.
doi: 10.1016/j.nonrwa.2013.06.005.
|
[26]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edn. CMS Books in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.
|
[27]
|
G. Zhao and S. Ruan, Spatial and temporal dynamics of a nonlocal viral infection model, SIAM J. Appl. Math., 78 (2018), 1954-1980.
doi: 10.1137/17M1144106.
|