August  2021, 26(8): 4045-4057. doi: 10.3934/dcdsb.2020273

Effect of diffusion in a spatial SIS epidemic model with spontaneous infection

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Department of Mathematics, Korea University, 2511, Sejong-ro, Sejong 339-700, South Korea

3. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

* Corresponding author: Email: zglin68@hotmail.com (Z. Lin)

Received  February 2020 Revised  July 2020 Published  August 2021 Early access  September 2020

This paper is concerned with an SIS epidemic reaction-diffusion model with mass-action incidence incorporating spontaneous infection in a spatially heterogeneous environment. The main goal of this article is to study the influence of spontaneous infection on the endemic equilibrium (EE) of the model. To achieve this, first the existence of EE is investigated. Furthermore, we discuss the asymptotic behavior of endemic equilibrium if the migration rate of the susceptible or infected population is sufficiently small. Compared to the case without spontaneous infection, our theoretical results show that spontaneous infection can enhance persistence of infectious disease.

Citation: Yachun Tong, Inkyung Ahn, Zhigui Lin. Effect of diffusion in a spatial SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4045-4057. doi: 10.3934/dcdsb.2020273
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 76 (2007), 1283-1309.  doi: 10.1137/060672522.

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[3]

F. Altarelli, A. Braunstein, L. Dall'Asta, J. R. Wakeling and R. Zecchina, Containing epidemic outbreaks by message-passing techniques, Physical Review X, 4 (2014), 021024. doi: 10.1103/PhysRevX.4.021024.

[4]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part â…, Discrete Contin. Dyn. Syst. Ser. A, 280 (1979), 361-367.  doi: 10.1038/280361a0.

[5]

H. Amman, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J.Math. Anal.Appl., 65 (1978), 432-467.  doi: 10.1016/0022-247X(78)90192-0.

[6]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.

[7]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Ser. Math. Comput. Biol., 2003. doi: 10.1002/0470871296.

[8]

R. H. CuiK. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.

[9]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.

[10]

K. Deng and Y. X. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.

[11]

Y. H. DuR. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.

[12]

Z. J. Du and R. Peng, A priori $L^\infty$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.

[14]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.

[15]

H. W. Hethcote, Epidemiology models with variable population size, Mathematical Understanding of Infectious Disease Dynamics, 16 (2009), 63-89.  doi: 10.1142/9789812834836_0002.

[16]

A. HillD. G. RandM. A. Nowak and N. A. Christakis, Emotions as infectious diseases in a large social network: The SISa model, Proceedings of the Royal Society B, 277 (2010), 3827-3835.  doi: 10.1098/rspb.2010.1217.

[17]

A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis, Infectious disease modeling of social contagion in networks, Plos Comput. Biol., 6 (2010), e1000968, 15 pp. doi: 10.1371/journal.pcbi.1000968.

[18]

W. Z. HuangM. A. Han and K. Y. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.

[19] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. 
[20]

H. C. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.

[21]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.

[22]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[23]

L. Nirenberg, Topics in Nonlinear Functional Analysis, Providence, RI: American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/006.

[24]

S. O'Regan and J. Drake, Theory of early warning signals of disease emergenceand leading indicators of elimination, Theoretical Ecology, 6 (2013), 333-357.  doi: 10.1007/s12080-013-0185-5.

[25]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[26]

R. Peng and S. Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[27]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[28]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[29]

H. J. ShiZ. S. Duan and G. R. Chen, An SIS model with infective medium on complex networks, Physica A, 387 (2008), 2133-2144.  doi: 10.1016/j.physa.2007.11.048.

[30]

Y. C. Tong and C. X. Lei, An SIS Epidemic Reaction-diffusion Model with Spontaneous Infection in A Spatially Heterogeneous Environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.

[31]

X. W. WenJ. P. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.

[32]

Y. X. Wu and X. F. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.

[33]

M. YangG. R. Chen and X. C. Fu, A modified SIS model with an infective medium on complex networks and its global stability, Physica A, 390 (2011), 2408-2413.  doi: 10.1016/j.physa.2011.02.007.

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 76 (2007), 1283-1309.  doi: 10.1137/060672522.

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[3]

F. Altarelli, A. Braunstein, L. Dall'Asta, J. R. Wakeling and R. Zecchina, Containing epidemic outbreaks by message-passing techniques, Physical Review X, 4 (2014), 021024. doi: 10.1103/PhysRevX.4.021024.

[4]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part â…, Discrete Contin. Dyn. Syst. Ser. A, 280 (1979), 361-367.  doi: 10.1038/280361a0.

[5]

H. Amman, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J.Math. Anal.Appl., 65 (1978), 432-467.  doi: 10.1016/0022-247X(78)90192-0.

[6]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.

[7]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Ser. Math. Comput. Biol., 2003. doi: 10.1002/0470871296.

[8]

R. H. CuiK. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.

[9]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.

[10]

K. Deng and Y. X. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.  doi: 10.1017/S0308210515000864.

[11]

Y. H. DuR. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.

[12]

Z. J. Du and R. Peng, A priori $L^\infty$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.

[14]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.

[15]

H. W. Hethcote, Epidemiology models with variable population size, Mathematical Understanding of Infectious Disease Dynamics, 16 (2009), 63-89.  doi: 10.1142/9789812834836_0002.

[16]

A. HillD. G. RandM. A. Nowak and N. A. Christakis, Emotions as infectious diseases in a large social network: The SISa model, Proceedings of the Royal Society B, 277 (2010), 3827-3835.  doi: 10.1098/rspb.2010.1217.

[17]

A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis, Infectious disease modeling of social contagion in networks, Plos Comput. Biol., 6 (2010), e1000968, 15 pp. doi: 10.1371/journal.pcbi.1000968.

[18]

W. Z. HuangM. A. Han and K. Y. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.

[19] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. 
[20]

H. C. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.

[21]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.

[22]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[23]

L. Nirenberg, Topics in Nonlinear Functional Analysis, Providence, RI: American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/006.

[24]

S. O'Regan and J. Drake, Theory of early warning signals of disease emergenceand leading indicators of elimination, Theoretical Ecology, 6 (2013), 333-357.  doi: 10.1007/s12080-013-0185-5.

[25]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.

[26]

R. Peng and S. Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.

[27]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.

[28]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.

[29]

H. J. ShiZ. S. Duan and G. R. Chen, An SIS model with infective medium on complex networks, Physica A, 387 (2008), 2133-2144.  doi: 10.1016/j.physa.2007.11.048.

[30]

Y. C. Tong and C. X. Lei, An SIS Epidemic Reaction-diffusion Model with Spontaneous Infection in A Spatially Heterogeneous Environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.

[31]

X. W. WenJ. P. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.

[32]

Y. X. Wu and X. F. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.

[33]

M. YangG. R. Chen and X. C. Fu, A modified SIS model with an infective medium on complex networks and its global stability, Physica A, 390 (2011), 2408-2413.  doi: 10.1016/j.physa.2011.02.007.

[1]

Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3077-3100. doi: 10.3934/dcdsb.2021174

[2]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[3]

Siyao Zhu, Jinliang Wang. Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic source. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3323-3340. doi: 10.3934/cpaa.2020147

[4]

Siyao Zhu, Jinliang Wang. Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear source in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1999-2019. doi: 10.3934/dcdsb.2020013

[5]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[6]

Xueying Sun, Renhao Cui. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4503-4520. doi: 10.3934/dcdss.2021120

[7]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[8]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[9]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[10]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[11]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[12]

David Greenhalgh, Yanfeng Liang, Xuerong Mao. Demographic stochasticity in the SDE SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2859-2884. doi: 10.3934/dcdsb.2015.20.2859

[13]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[14]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

[15]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[16]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[17]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[18]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[19]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[20]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (338)
  • HTML views (287)
  • Cited by (0)

Other articles
by authors

[Back to Top]