doi: 10.3934/dcdsb.2020275

When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?

1. 

Institute for Applied Mathematics, School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

* Corresponding author: Mario Fuest

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author has been supported by China Scholarship Council (No. 201906090124), and in part by National Natural Science Foundation of China (Nos. 11671079, 11701290, 11601127 and 11171063), and the Natural Science Foundation of Jiangsu Province (No. BK20170896). The second author is partially supported by the German Academic Scholarship Foundation and by the Deutsche Forschungsgemeinschaft within the project Emergence of structures and advantages in cross-diffusion systems, project number 411007140

We construct global generalized solutions to the chemotaxis system
$ \begin{cases} u_t = \Delta u - \nabla \cdot (u \nabla v) + \lambda(x) u - \mu(x) u^\kappa, \\ v_t = \Delta v - v + u \end{cases} $
in smooth, bounded domains
$ \Omega \subset \mathbb R^n $
,
$ n \geq 2 $
, for certain choices of
$ \lambda, \mu $
and
$ \kappa $
.
Here, inter alia, the selections
$ \mu(x) = |x|^\alpha $
with
$ \alpha < 2 $
and
$ \kappa = 2 $
as well as
$ \mu \equiv \mu_1 > 0 $
and
$ \kappa > \min\{\frac{2n-2}{n}, \frac{2n+4}{n+4}\} $
are admissible (in both cases for any sufficiently smooth
$ \lambda $
).
While the former case appears to be novel in general, in the two- and three-dimensional setting, the latter improves on a recent result by Winkler (Adv. Nonlinear Anal. 9 (2019), no. 1,526–566), where the condition
$ \kappa > \frac{2n+4}{n+4} $
has been imposed. In particular, for
$ n = 2 $
, our result shows that taking any
$ \kappa > 1 $
suffices to exclude the possibility of collapse into a persistent Dirac distribution.
Citation: Jianlu Yan, Mario Fuest. When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020275
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane–the supercritical case, in Parabolic and Navier–Stokes Equations. Part 1, vol. 81 of Banach center publ., Polish Acad. Sci. Inst. Math., Warsaw, 2008, 31–42. doi: 10.4064/bc81-0-2.  Google Scholar

[3]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems, Preprint, arXiv: 2005.12089. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.  Google Scholar

[5]

M. Fuest, Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022, 14pp. doi: 10.1016/j.nonrwa.2019.103022.  Google Scholar

[6]

F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys., 71 (2020), Paper No. 80, 23 pp. doi: 10.1007/s00033-020-01304-w.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[11]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[12]

J. Lankeit, Immediate smoothing and global solutions for initial data in ${L}^1 \times {W}^{1, 2}$ in a Keller-Segel system with logistic terms in 2D, Proc. R. Soc. Edinb. Sect. Math, to appear (see also arXiv: 2003.02644). Google Scholar

[13]

J. Lankeit and M. Winkler, Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122 (2020), 35-64.  doi: 10.1365/s13291-019-00210-z.  Google Scholar

[14]

X. Li, On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal. Real World Appl., 49 (2019), 24-44.  doi: 10.1016/j.nonrwa.2019.02.005.  Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvac, 44 (2001), 441–469. URL http://www.math.kobe-u.ac.jp/ fe/xml/mr1893940.xml.  Google Scholar

[17]

K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162-182.  doi: 10.1016/j.jtbi.2018.06.019.  Google Scholar

[18]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.  Google Scholar

[19]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910.  doi: 10.1016/j.jmaa.2018.04.034.  Google Scholar

[20]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. III. Transition fronts, Preprint, arXiv: 1811.01525. Google Scholar

[21]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-368.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[22]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[23]

G. Viglialoro, Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.  Google Scholar

[24]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[27]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[28]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Mathématiques Pures Appliquées, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[29]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation, Z. Für Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[31]

M. Winkler, How strong singularities can be regularized by logistic degradation in the Keller–Segel system?, Ann. Mat. Pura Ed Appl., 198 (2019), 1615-1637.  doi: 10.1007/s10231-019-00834-z.  Google Scholar

[32]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in ${L}^1$, Adv. Nonlinear Anal., 9 (2019), 526-566.  doi: 10.1515/anona-2020-0013.  Google Scholar

[33]

D. WoodwardR. TysonM. MyerscoughJ. MurrayE. Budrene and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J., 68 (1995), 2181-2189.  doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane–the supercritical case, in Parabolic and Navier–Stokes Equations. Part 1, vol. 81 of Banach center publ., Polish Acad. Sci. Inst. Math., Warsaw, 2008, 31–42. doi: 10.4064/bc81-0-2.  Google Scholar

[3]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems, Preprint, arXiv: 2005.12089. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.  Google Scholar

[5]

M. Fuest, Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022, 14pp. doi: 10.1016/j.nonrwa.2019.103022.  Google Scholar

[6]

F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys., 71 (2020), Paper No. 80, 23 pp. doi: 10.1007/s00033-020-01304-w.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[11]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[12]

J. Lankeit, Immediate smoothing and global solutions for initial data in ${L}^1 \times {W}^{1, 2}$ in a Keller-Segel system with logistic terms in 2D, Proc. R. Soc. Edinb. Sect. Math, to appear (see also arXiv: 2003.02644). Google Scholar

[13]

J. Lankeit and M. Winkler, Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122 (2020), 35-64.  doi: 10.1365/s13291-019-00210-z.  Google Scholar

[14]

X. Li, On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal. Real World Appl., 49 (2019), 24-44.  doi: 10.1016/j.nonrwa.2019.02.005.  Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvac, 44 (2001), 441–469. URL http://www.math.kobe-u.ac.jp/ fe/xml/mr1893940.xml.  Google Scholar

[17]

K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162-182.  doi: 10.1016/j.jtbi.2018.06.019.  Google Scholar

[18]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.  Google Scholar

[19]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910.  doi: 10.1016/j.jmaa.2018.04.034.  Google Scholar

[20]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. III. Transition fronts, Preprint, arXiv: 1811.01525. Google Scholar

[21]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-368.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[22]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[23]

G. Viglialoro, Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.  Google Scholar

[24]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[27]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[28]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Mathématiques Pures Appliquées, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[29]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation, Z. Für Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[31]

M. Winkler, How strong singularities can be regularized by logistic degradation in the Keller–Segel system?, Ann. Mat. Pura Ed Appl., 198 (2019), 1615-1637.  doi: 10.1007/s10231-019-00834-z.  Google Scholar

[32]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in ${L}^1$, Adv. Nonlinear Anal., 9 (2019), 526-566.  doi: 10.1515/anona-2020-0013.  Google Scholar

[33]

D. WoodwardR. TysonM. MyerscoughJ. MurrayE. Budrene and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J., 68 (1995), 2181-2189.  doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

[1]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[2]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[3]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[4]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[7]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[8]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[12]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[13]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[14]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[15]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[16]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[17]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[18]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[19]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[20]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

2019 Impact Factor: 1.27

Article outline

[Back to Top]