doi: 10.3934/dcdsb.2020275

When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?

1. 

Institute for Applied Mathematics, School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

* Corresponding author: Mario Fuest

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author has been supported by China Scholarship Council (No. 201906090124), and in part by National Natural Science Foundation of China (Nos. 11671079, 11701290, 11601127 and 11171063), and the Natural Science Foundation of Jiangsu Province (No. BK20170896). The second author is partially supported by the German Academic Scholarship Foundation and by the Deutsche Forschungsgemeinschaft within the project Emergence of structures and advantages in cross-diffusion systems, project number 411007140

We construct global generalized solutions to the chemotaxis system
$ \begin{cases} u_t = \Delta u - \nabla \cdot (u \nabla v) + \lambda(x) u - \mu(x) u^\kappa, \\ v_t = \Delta v - v + u \end{cases} $
in smooth, bounded domains
$ \Omega \subset \mathbb R^n $
,
$ n \geq 2 $
, for certain choices of
$ \lambda, \mu $
and
$ \kappa $
.
Here, inter alia, the selections
$ \mu(x) = |x|^\alpha $
with
$ \alpha < 2 $
and
$ \kappa = 2 $
as well as
$ \mu \equiv \mu_1 > 0 $
and
$ \kappa > \min\{\frac{2n-2}{n}, \frac{2n+4}{n+4}\} $
are admissible (in both cases for any sufficiently smooth
$ \lambda $
).
While the former case appears to be novel in general, in the two- and three-dimensional setting, the latter improves on a recent result by Winkler (Adv. Nonlinear Anal. 9 (2019), no. 1,526–566), where the condition
$ \kappa > \frac{2n+4}{n+4} $
has been imposed. In particular, for
$ n = 2 $
, our result shows that taking any
$ \kappa > 1 $
suffices to exclude the possibility of collapse into a persistent Dirac distribution.
Citation: Jianlu Yan, Mario Fuest. When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020275
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane–the supercritical case, in Parabolic and Navier–Stokes Equations. Part 1, vol. 81 of Banach center publ., Polish Acad. Sci. Inst. Math., Warsaw, 2008, 31–42. doi: 10.4064/bc81-0-2.  Google Scholar

[3]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems, Preprint, arXiv: 2005.12089. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.  Google Scholar

[5]

M. Fuest, Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022, 14pp. doi: 10.1016/j.nonrwa.2019.103022.  Google Scholar

[6]

F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys., 71 (2020), Paper No. 80, 23 pp. doi: 10.1007/s00033-020-01304-w.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[11]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[12]

J. Lankeit, Immediate smoothing and global solutions for initial data in ${L}^1 \times {W}^{1, 2}$ in a Keller-Segel system with logistic terms in 2D, Proc. R. Soc. Edinb. Sect. Math, to appear (see also arXiv: 2003.02644). Google Scholar

[13]

J. Lankeit and M. Winkler, Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122 (2020), 35-64.  doi: 10.1365/s13291-019-00210-z.  Google Scholar

[14]

X. Li, On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal. Real World Appl., 49 (2019), 24-44.  doi: 10.1016/j.nonrwa.2019.02.005.  Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvac, 44 (2001), 441–469. URL http://www.math.kobe-u.ac.jp/ fe/xml/mr1893940.xml.  Google Scholar

[17]

K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162-182.  doi: 10.1016/j.jtbi.2018.06.019.  Google Scholar

[18]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.  Google Scholar

[19]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910.  doi: 10.1016/j.jmaa.2018.04.034.  Google Scholar

[20]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. III. Transition fronts, Preprint, arXiv: 1811.01525. Google Scholar

[21]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-368.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[22]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[23]

G. Viglialoro, Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.  Google Scholar

[24]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[27]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[28]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Mathématiques Pures Appliquées, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[29]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation, Z. Für Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[31]

M. Winkler, How strong singularities can be regularized by logistic degradation in the Keller–Segel system?, Ann. Mat. Pura Ed Appl., 198 (2019), 1615-1637.  doi: 10.1007/s10231-019-00834-z.  Google Scholar

[32]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in ${L}^1$, Adv. Nonlinear Anal., 9 (2019), 526-566.  doi: 10.1515/anona-2020-0013.  Google Scholar

[33]

D. WoodwardR. TysonM. MyerscoughJ. MurrayE. Budrene and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J., 68 (1995), 2181-2189.  doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

P. Biler, Radially symmetric solutions of a chemotaxis model in the plane–the supercritical case, in Parabolic and Navier–Stokes Equations. Part 1, vol. 81 of Banach center publ., Polish Acad. Sci. Inst. Math., Warsaw, 2008, 31–42. doi: 10.4064/bc81-0-2.  Google Scholar

[3]

T. Black, M. Fuest and J. Lankeit, Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems, Preprint, arXiv: 2005.12089. Google Scholar

[4]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734.  doi: 10.1142/S0218202505000947.  Google Scholar

[5]

M. Fuest, Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source, Nonlinear Anal. Real World Appl., 52 (2020), 103022, 14pp. doi: 10.1016/j.nonrwa.2019.103022.  Google Scholar

[6]

F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys., 71 (2020), Paper No. 80, 23 pp. doi: 10.1007/s00033-020-01304-w.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[11]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[12]

J. Lankeit, Immediate smoothing and global solutions for initial data in ${L}^1 \times {W}^{1, 2}$ in a Keller-Segel system with logistic terms in 2D, Proc. R. Soc. Edinb. Sect. Math, to appear (see also arXiv: 2003.02644). Google Scholar

[13]

J. Lankeit and M. Winkler, Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122 (2020), 35-64.  doi: 10.1365/s13291-019-00210-z.  Google Scholar

[14]

X. Li, On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal. Real World Appl., 49 (2019), 24-44.  doi: 10.1016/j.nonrwa.2019.02.005.  Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvac, 44 (2001), 441–469. URL http://www.math.kobe-u.ac.jp/ fe/xml/mr1893940.xml.  Google Scholar

[17]

K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162-182.  doi: 10.1016/j.jtbi.2018.06.019.  Google Scholar

[18]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.  Google Scholar

[19]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464 (2018), 883-910.  doi: 10.1016/j.jmaa.2018.04.034.  Google Scholar

[20]

R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $\mathbb{R}^n$. III. Transition fronts, Preprint, arXiv: 1811.01525. Google Scholar

[21]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-368.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[22]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[23]

G. Viglialoro, Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.  doi: 10.1016/j.jmaa.2016.02.069.  Google Scholar

[24]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[27]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[28]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Mathématiques Pures Appliquées, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[29]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[30]

M. Winkler, Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation, Z. Für Angew. Math. Phys., 69 (2018), Paper No. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[31]

M. Winkler, How strong singularities can be regularized by logistic degradation in the Keller–Segel system?, Ann. Mat. Pura Ed Appl., 198 (2019), 1615-1637.  doi: 10.1007/s10231-019-00834-z.  Google Scholar

[32]

M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in ${L}^1$, Adv. Nonlinear Anal., 9 (2019), 526-566.  doi: 10.1515/anona-2020-0013.  Google Scholar

[33]

D. WoodwardR. TysonM. MyerscoughJ. MurrayE. Budrene and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J., 68 (1995), 2181-2189.  doi: 10.1016/S0006-3495(95)80400-5.  Google Scholar

[1]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[2]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[3]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[4]

Rachidi B. Salako, Wenxian Shen. Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 293-319. doi: 10.3934/dcdss.2020017

[5]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[6]

Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2233-2260. doi: 10.3934/dcdsb.2017094

[7]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

[8]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[9]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[10]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[11]

Siyao Zhu, Jinliang Wang. Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear source in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1999-2019. doi: 10.3934/dcdsb.2020013

[12]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[13]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[14]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[15]

Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

[16]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020194

[17]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020154

[18]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[19]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Decay in chemotaxis systems with a logistic term. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 257-268. doi: 10.3934/dcdss.2020014

[20]

Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545

2019 Impact Factor: 1.27

Article outline

[Back to Top]