doi: 10.3934/dcdsb.2020276

Time-domain analysis of forward obstacle scattering for elastic wave

School of Mathematics, Jilin University, Changchun, 130012, China

* Corresponding author: Heping Dong

Received  April 2020 Revised  July 2020 Published  September 2020

This paper concerns a time-domain scattering problem of elastic plane wave by a rigid obstacle, which is immersed in an open space filled with homogeneous and isotropic elastic medium in two dimensions. A new compressed coordinate transformation is developed to reduce the scattering problem into an initial boundary value problem in a bounded domain over a finite time interval. The well-posednesss is established for the reduced problem. This paper adopts Galerkin method to prove the uniqueness results and employs energy method to derive stability results for the scattering problem. Furthermore, we achieve a priori estimate with explicit time dependence.

Citation: Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020276
References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

show all references

References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[11]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.27

Article outline

[Back to Top]