doi: 10.3934/dcdsb.2020276

Time-domain analysis of forward obstacle scattering for elastic wave

School of Mathematics, Jilin University, Changchun, 130012, China

* Corresponding author: Heping Dong

Received  April 2020 Revised  July 2020 Published  September 2020

This paper concerns a time-domain scattering problem of elastic plane wave by a rigid obstacle, which is immersed in an open space filled with homogeneous and isotropic elastic medium in two dimensions. A new compressed coordinate transformation is developed to reduce the scattering problem into an initial boundary value problem in a bounded domain over a finite time interval. The well-posednesss is established for the reduced problem. This paper adopts Galerkin method to prove the uniqueness results and employs energy method to derive stability results for the scattering problem. Furthermore, we achieve a priori estimate with explicit time dependence.

Citation: Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020276
References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

show all references

References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

[1]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[2]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[3]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[4]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[5]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[6]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[7]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[8]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[9]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[10]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[11]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[12]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[13]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[14]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[15]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[16]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[17]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[18]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[19]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[20]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

2019 Impact Factor: 1.27

Article outline

[Back to Top]