doi: 10.3934/dcdsb.2020276

Time-domain analysis of forward obstacle scattering for elastic wave

School of Mathematics, Jilin University, Changchun, 130012, China

* Corresponding author: Heping Dong

Received  April 2020 Revised  July 2020 Published  September 2020

This paper concerns a time-domain scattering problem of elastic plane wave by a rigid obstacle, which is immersed in an open space filled with homogeneous and isotropic elastic medium in two dimensions. A new compressed coordinate transformation is developed to reduce the scattering problem into an initial boundary value problem in a bounded domain over a finite time interval. The well-posednesss is established for the reduced problem. This paper adopts Galerkin method to prove the uniqueness results and employs energy method to derive stability results for the scattering problem. Furthermore, we achieve a priori estimate with explicit time dependence.

Citation: Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020276
References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

show all references

References:
[1]

G. BaoB. HuP. Li and J. Wang, Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.  doi: 10.3934/dcdsb.2019181.  Google Scholar

[2]

G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604. doi: 10.1016/j.matpur.2018.01.007.  Google Scholar

[3]

G. BaoY. Gao and P. Li, Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

M. J. Bluck and S. P. Walker, Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.  doi: 10.1109/8.575643.  Google Scholar

[5]

J. H. BrambleJ. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.  doi: 10.1090/S0025-5718-10-02355-0.  Google Scholar

[6]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[7]

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar

[8]

Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec, On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.   Google Scholar

[9]

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.  doi: 10.1137/110835268.  Google Scholar

[10]

Z. ChenX. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.  doi: 10.1090/mcom/3100.  Google Scholar

[11]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.  doi: 10.1137/18M1227263.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[14]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[15]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[16]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd  Google Scholar

[18]

P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp. doi: 10.1088/0266-5611/32/11/115018.  Google Scholar

[19]

P. Li and X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.  doi: 10.3934/ipi.2019026.  Google Scholar

[20]

P. Li and L. Zhang, Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.  doi: 10.4310/CMS.2019.v17.n6.a8.  Google Scholar

[21]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[22]

C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.  doi: 10.1007/s11425-017-9364-3.  Google Scholar

[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[6]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[9]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[10]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[11]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[12]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[13]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[14]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[15]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[18]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[19]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[20]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.27

Article outline

[Back to Top]