• Previous Article
    On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
  • DCDS-B Home
  • This Issue
  • Next Article
    Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters
doi: 10.3934/dcdsb.2020277

A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction

1. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

* Corresponding author: Shangyou Zhang

Received  April 2020 Revised  August 2020 Published  September 2020

Fund Project: The first author was supported in part by National Science Foundation Grant DMS-1620016

The weak Galerkin (WG) finite element method is an effective and flexible general numerical technique for solving partial differential equations. It is a natural extension of the classic conforming finite element method for discontinuous approximations, which maintains simple finite element formulation. Stabilizer free weak Galerkin methods further simplify the WG methods and reduce computational complexity. This paper explores the possibility of optimal combination of polynomial spaces that minimize the number of unknowns in the stabilizer free WG schemes without compromising the accuracy of the numerical approximation. A new stabilizer free weak Galerkin finite element method is proposed and analyzed with polynomial degree reduction. To achieve such a goal, a new definition of weak gradient is introduced. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete $ H^1 $ norm and the standard $ L^2 $ norm. The numerical examples are tested on various meshes and confirm the theory.

Citation: Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020277
References:
[1]

A. Al-Taweel and X. Wang, A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Applied Numerical Mathematics, 150 (2020), 444-451.  doi: 10.1016/j.apnum.2019.10.009.  Google Scholar

[2]

M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), Paper No. 5, 15 pp. doi: 10.1007/s10915-019-01120-z.  Google Scholar

[3]

X. HuL. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. of Computational and Applied Mathematics, 362 (2019), 614-625.  doi: 10.1016/j.cam.2018.08.022.  Google Scholar

[4]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SINUM, 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[5]

G. LinJ. LiuL. Mu and X. Ye, weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phy., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[6]

L. MuJ. Wang and X. Ye, weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. of Computational Physics, 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method for biharmonic equations on polytopal meshes, Numer. Meth. Partial Diff. Eq., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phy., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[12]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[13]

C. Wang and J. Wang, Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68 (2016), 1144-1171.  doi: 10.1007/s10915-016-0176-y.  Google Scholar

[14]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[15]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[16]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. in Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[17]

J. WangX. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model., 17 (2020), 517-531.   Google Scholar

[18]

X. WangQ. ZhaiR. Zhang and S. Zhang, The weak Galerkin finite element method for solving the time-dependent integro-differential equations, Adv. Appl. Math. Mech., 12 (2020), 164-188.  doi: 10.4208/aamm.OA-2019-0088.  Google Scholar

[19]

X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699, 9pp, arXiv: 1906.06634. doi: 10.1016/j.cam.2019.112699.  Google Scholar

[20]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J of Numerical Analysis and Modeling, 17 (2020), 110–117, arXiv: 1904.03331.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J of Numerical Analysis and Modeling, 17 (2020), 281–296, arXiv: 1907.01397.  Google Scholar

[22]

X. Ye, S. Zhang and Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, 8 (2020), 100097. doi: 10.1016/j.rinam.2020.100097.  Google Scholar

show all references

References:
[1]

A. Al-Taweel and X. Wang, A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Applied Numerical Mathematics, 150 (2020), 444-451.  doi: 10.1016/j.apnum.2019.10.009.  Google Scholar

[2]

M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), Paper No. 5, 15 pp. doi: 10.1007/s10915-019-01120-z.  Google Scholar

[3]

X. HuL. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. of Computational and Applied Mathematics, 362 (2019), 614-625.  doi: 10.1016/j.cam.2018.08.022.  Google Scholar

[4]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SINUM, 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[5]

G. LinJ. LiuL. Mu and X. Ye, weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phy., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[6]

L. MuJ. Wang and X. Ye, weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. of Computational Physics, 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method for biharmonic equations on polytopal meshes, Numer. Meth. Partial Diff. Eq., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phy., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[12]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[13]

C. Wang and J. Wang, Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68 (2016), 1144-1171.  doi: 10.1007/s10915-016-0176-y.  Google Scholar

[14]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[15]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[16]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. in Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[17]

J. WangX. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model., 17 (2020), 517-531.   Google Scholar

[18]

X. WangQ. ZhaiR. Zhang and S. Zhang, The weak Galerkin finite element method for solving the time-dependent integro-differential equations, Adv. Appl. Math. Mech., 12 (2020), 164-188.  doi: 10.4208/aamm.OA-2019-0088.  Google Scholar

[19]

X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699, 9pp, arXiv: 1906.06634. doi: 10.1016/j.cam.2019.112699.  Google Scholar

[20]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J of Numerical Analysis and Modeling, 17 (2020), 110–117, arXiv: 1904.03331.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J of Numerical Analysis and Modeling, 17 (2020), 281–296, arXiv: 1907.01397.  Google Scholar

[22]

X. Ye, S. Zhang and Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, 8 (2020), 100097. doi: 10.1016/j.rinam.2020.100097.  Google Scholar

Figure 5.1.  Example 1. The first three triangular grids
Figure 5.2.  Example 2. The first three triangular grids
Figure 5.3.  Example 3. The first three rectangular grids
Figure 5.4.  Example 4. The first three polygonal grids
Table 1.1.  Weak gradient calculated by (1.4), $ {{|||}}\cdot{{|||}} = O(h^{r_1}) $ and $ \|\cdot\| = O(h^{r_2}) $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 0 $ $ 0 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 1 $ $ 2 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 2 $ $ 3 $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 0 $ $ 0 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 1 $ $ 2 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 2 $ $ 3 $
Table 1.2.  Weak gradient calculated by (2.3), $ {{|||}}\cdot{{|||}} = O(h^{r_1}) $ and $ \|\cdot\| = O(h^{r_2}) $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 1 $ $ 2 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 2 $ $ 3 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 3 $ $ 4 $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 1 $ $ 2 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 2 $ $ 3 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 3 $ $ 4 $
Table 5.1.  Example 1. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on triangular grids shown in Figure 5.1
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3871E-01 1.00 0.3306E-03 1.99
1 7 0.1937E-01 1.00 0.8279E-04 2.00
8 0.9685E-02 1.00 0.2070E-04 2.00
6 0.4131E-03 1.98 0.1783E-05 2.95
2 7 0.1038E-03 1.99 0.2268E-06 2.97
8 0.2602E-04 2.00 0.2859E-07 2.99
5 0.2925E-04 2.99 0.1515E-06 3.98
3 6 0.3665E-05 3.00 0.9518E-08 3.99
7 0.4587E-06 3.00 0.5963E-09 4.00
5 0.4091E-06 3.99 0.1592E-08 4.97
4 6 0.2568E-07 3.99 0.5026E-10 4.99
7 0.1608E-08 4.00 0.1610E-11 4.96
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3871E-01 1.00 0.3306E-03 1.99
1 7 0.1937E-01 1.00 0.8279E-04 2.00
8 0.9685E-02 1.00 0.2070E-04 2.00
6 0.4131E-03 1.98 0.1783E-05 2.95
2 7 0.1038E-03 1.99 0.2268E-06 2.97
8 0.2602E-04 2.00 0.2859E-07 2.99
5 0.2925E-04 2.99 0.1515E-06 3.98
3 6 0.3665E-05 3.00 0.9518E-08 3.99
7 0.4587E-06 3.00 0.5963E-09 4.00
5 0.4091E-06 3.99 0.1592E-08 4.97
4 6 0.2568E-07 3.99 0.5026E-10 4.99
7 0.1608E-08 4.00 0.1610E-11 4.96
Table 5.2.  Example 2. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on rectangular grids shown in Figure 5.2
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.120E-02 2.01 0.141E-01 2.00
1 7 0.300E-03 2.00 0.354E-02 2.00
8 0.749E-04 2.00 0.885E-03 2.00
6 0.5734E-03 2.00 0.1482E-05 3.00
2 7 0.1434E-03 2.00 0.1852E-06 3.00
8 0.3584E-04 2.00 0.2314E-07 3.00
5 0.3645E-04 3.00 0.1360E-06 3.99
3 6 0.4559E-05 3.00 0.8517E-08 4.00
7 0.5699E-06 3.00 0.5326E-09 4.00
5 0.4222E-06 4.00 0.9119E-09 5.01
4 6 0.2639E-07 4.00 0.2846E-10 5.00
7 0.1650E-08 4.00 0.1110E-11 4.68
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.120E-02 2.01 0.141E-01 2.00
1 7 0.300E-03 2.00 0.354E-02 2.00
8 0.749E-04 2.00 0.885E-03 2.00
6 0.5734E-03 2.00 0.1482E-05 3.00
2 7 0.1434E-03 2.00 0.1852E-06 3.00
8 0.3584E-04 2.00 0.2314E-07 3.00
5 0.3645E-04 3.00 0.1360E-06 3.99
3 6 0.4559E-05 3.00 0.8517E-08 4.00
7 0.5699E-06 3.00 0.5326E-09 4.00
5 0.4222E-06 4.00 0.9119E-09 5.01
4 6 0.2639E-07 4.00 0.2846E-10 5.00
7 0.1650E-08 4.00 0.1110E-11 4.68
Table 5.3.  Example 3. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on rectangular grids shown in Figure 5.3
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.141E-01 2.00 0.120E-02 2.01
1 7 0.354E-02 2.00 0.300E-03 2.00
8 0.885E-03 2.00 0.749E-04 2.00
6 0.158E-03 3.00 0.113E-05 4.00
2 7 0.197E-04 3.00 0.709E-07 4.00
8 0.246E-05 3.00 0.444E-08 4.00
4 0.251E-03 4.80 0.409E-05 5.28
3 5 0.143E-04 4.13 0.128E-06 4.99
6 0.889E-06 4.01 0.407E-08 4.98
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.141E-01 2.00 0.120E-02 2.01
1 7 0.354E-02 2.00 0.300E-03 2.00
8 0.885E-03 2.00 0.749E-04 2.00
6 0.158E-03 3.00 0.113E-05 4.00
2 7 0.197E-04 3.00 0.709E-07 4.00
8 0.246E-05 3.00 0.444E-08 4.00
4 0.251E-03 4.80 0.409E-05 5.28
3 5 0.143E-04 4.13 0.128E-06 4.99
6 0.889E-06 4.01 0.407E-08 4.98
Table 5.4.  Example 4. The $ P_k-P_{k-1}-[P_{k+2}]^2 $ element, on polygonal grids shown in Figure 5.4
$ k $ $ {{\mathcal T}}_l $ $ {{|\hspace{-.02in}|\hspace{-.02in}|}} Q_hu-u_h{{|\hspace{-.02in}|\hspace{-.02in}|}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3735E-01 1.00 0.7856E-04 2.00
1 7 0.1868E-01 1.00 0.1966E-04 2.00
8 0.9339E-02 1.00 0.4916E-05 2.00
5 0.1504E-02 1.98 0.3242E-05 2.95
2 6 0.3782E-03 1.99 0.4131E-06 2.97
7 0.9482E-04 2.00 0.5216E-07 2.99
4 0.1267E-03 2.97 0.4106E-06 3.95
3 5 0.1600E-04 2.99 0.2636E-07 3.96
6 0.2010E-05 2.99 0.1673E-08 3.98
2 0.5517E-03 3.98 0.5905E-05 5.26
4 3 0.3518E-04 3.97 0.1699E-06 5.12
4 0.2234E-05 3.98 0.5253E-08 5.02
$ k $ $ {{\mathcal T}}_l $ $ {{|\hspace{-.02in}|\hspace{-.02in}|}} Q_hu-u_h{{|\hspace{-.02in}|\hspace{-.02in}|}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3735E-01 1.00 0.7856E-04 2.00
1 7 0.1868E-01 1.00 0.1966E-04 2.00
8 0.9339E-02 1.00 0.4916E-05 2.00
5 0.1504E-02 1.98 0.3242E-05 2.95
2 6 0.3782E-03 1.99 0.4131E-06 2.97
7 0.9482E-04 2.00 0.5216E-07 2.99
4 0.1267E-03 2.97 0.4106E-06 3.95
3 5 0.1600E-04 2.99 0.2636E-07 3.96
6 0.2010E-05 2.99 0.1673E-08 3.98
2 0.5517E-03 3.98 0.5905E-05 5.26
4 3 0.3518E-04 3.97 0.1699E-06 5.12
4 0.2234E-05 3.98 0.5253E-08 5.02
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]