• Previous Article
    On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
  • DCDS-B Home
  • This Issue
  • Next Article
    Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters
doi: 10.3934/dcdsb.2020277

A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction

1. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

* Corresponding author: Shangyou Zhang

Received  April 2020 Revised  August 2020 Published  September 2020

Fund Project: The first author was supported in part by National Science Foundation Grant DMS-1620016

The weak Galerkin (WG) finite element method is an effective and flexible general numerical technique for solving partial differential equations. It is a natural extension of the classic conforming finite element method for discontinuous approximations, which maintains simple finite element formulation. Stabilizer free weak Galerkin methods further simplify the WG methods and reduce computational complexity. This paper explores the possibility of optimal combination of polynomial spaces that minimize the number of unknowns in the stabilizer free WG schemes without compromising the accuracy of the numerical approximation. A new stabilizer free weak Galerkin finite element method is proposed and analyzed with polynomial degree reduction. To achieve such a goal, a new definition of weak gradient is introduced. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete $ H^1 $ norm and the standard $ L^2 $ norm. The numerical examples are tested on various meshes and confirm the theory.

Citation: Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020277
References:
[1]

A. Al-Taweel and X. Wang, A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Applied Numerical Mathematics, 150 (2020), 444-451.  doi: 10.1016/j.apnum.2019.10.009.  Google Scholar

[2]

M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), Paper No. 5, 15 pp. doi: 10.1007/s10915-019-01120-z.  Google Scholar

[3]

X. HuL. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. of Computational and Applied Mathematics, 362 (2019), 614-625.  doi: 10.1016/j.cam.2018.08.022.  Google Scholar

[4]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SINUM, 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[5]

G. LinJ. LiuL. Mu and X. Ye, weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phy., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[6]

L. MuJ. Wang and X. Ye, weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. of Computational Physics, 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method for biharmonic equations on polytopal meshes, Numer. Meth. Partial Diff. Eq., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phy., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[12]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[13]

C. Wang and J. Wang, Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68 (2016), 1144-1171.  doi: 10.1007/s10915-016-0176-y.  Google Scholar

[14]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[15]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[16]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. in Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[17]

J. WangX. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model., 17 (2020), 517-531.   Google Scholar

[18]

X. WangQ. ZhaiR. Zhang and S. Zhang, The weak Galerkin finite element method for solving the time-dependent integro-differential equations, Adv. Appl. Math. Mech., 12 (2020), 164-188.  doi: 10.4208/aamm.OA-2019-0088.  Google Scholar

[19]

X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699, 9pp, arXiv: 1906.06634. doi: 10.1016/j.cam.2019.112699.  Google Scholar

[20]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J of Numerical Analysis and Modeling, 17 (2020), 110–117, arXiv: 1904.03331.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J of Numerical Analysis and Modeling, 17 (2020), 281–296, arXiv: 1907.01397.  Google Scholar

[22]

X. Ye, S. Zhang and Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, 8 (2020), 100097. doi: 10.1016/j.rinam.2020.100097.  Google Scholar

show all references

References:
[1]

A. Al-Taweel and X. Wang, A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Applied Numerical Mathematics, 150 (2020), 444-451.  doi: 10.1016/j.apnum.2019.10.009.  Google Scholar

[2]

M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), Paper No. 5, 15 pp. doi: 10.1007/s10915-019-01120-z.  Google Scholar

[3]

X. HuL. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. of Computational and Applied Mathematics, 362 (2019), 614-625.  doi: 10.1016/j.cam.2018.08.022.  Google Scholar

[4]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SINUM, 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[5]

G. LinJ. LiuL. Mu and X. Ye, weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phy., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[6]

L. MuJ. Wang and X. Ye, weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. of Computational Physics, 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method for biharmonic equations on polytopal meshes, Numer. Meth. Partial Diff. Eq., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phy., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[12]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[13]

C. Wang and J. Wang, Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68 (2016), 1144-1171.  doi: 10.1007/s10915-016-0176-y.  Google Scholar

[14]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[15]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[16]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. in Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[17]

J. WangX. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model., 17 (2020), 517-531.   Google Scholar

[18]

X. WangQ. ZhaiR. Zhang and S. Zhang, The weak Galerkin finite element method for solving the time-dependent integro-differential equations, Adv. Appl. Math. Mech., 12 (2020), 164-188.  doi: 10.4208/aamm.OA-2019-0088.  Google Scholar

[19]

X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699, 9pp, arXiv: 1906.06634. doi: 10.1016/j.cam.2019.112699.  Google Scholar

[20]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J of Numerical Analysis and Modeling, 17 (2020), 110–117, arXiv: 1904.03331.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J of Numerical Analysis and Modeling, 17 (2020), 281–296, arXiv: 1907.01397.  Google Scholar

[22]

X. Ye, S. Zhang and Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, 8 (2020), 100097. doi: 10.1016/j.rinam.2020.100097.  Google Scholar

Figure 5.1.  Example 1. The first three triangular grids
Figure 5.2.  Example 2. The first three triangular grids
Figure 5.3.  Example 3. The first three rectangular grids
Figure 5.4.  Example 4. The first three polygonal grids
Table 1.1.  Weak gradient calculated by (1.4), $ {{|||}}\cdot{{|||}} = O(h^{r_1}) $ and $ \|\cdot\| = O(h^{r_2}) $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 0 $ $ 0 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 1 $ $ 2 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 2 $ $ 3 $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 0 $ $ 0 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 1 $ $ 2 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 2 $ $ 3 $
Table 1.2.  Weak gradient calculated by (2.3), $ {{|||}}\cdot{{|||}} = O(h^{r_1}) $ and $ \|\cdot\| = O(h^{r_2}) $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 1 $ $ 2 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 2 $ $ 3 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 3 $ $ 4 $
$ P_{k}(T) $ $ P_{k-1}(e) $ $ [P_{k+1}(T)]^d $ $ r_1 $ $ r_2 $
$ P_1(T) $ $ P_0(e) $ $ [P_2(T)]^2 $ $ 1 $ $ 2 $
$ P_2(T) $ $ P_1(e) $ $ [P_3(T)]^2 $ $ 2 $ $ 3 $
$ P_3(T) $ $ P_2(e) $ $ [P_4(T)]^2 $ $ 3 $ $ 4 $
Table 5.1.  Example 1. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on triangular grids shown in Figure 5.1
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3871E-01 1.00 0.3306E-03 1.99
1 7 0.1937E-01 1.00 0.8279E-04 2.00
8 0.9685E-02 1.00 0.2070E-04 2.00
6 0.4131E-03 1.98 0.1783E-05 2.95
2 7 0.1038E-03 1.99 0.2268E-06 2.97
8 0.2602E-04 2.00 0.2859E-07 2.99
5 0.2925E-04 2.99 0.1515E-06 3.98
3 6 0.3665E-05 3.00 0.9518E-08 3.99
7 0.4587E-06 3.00 0.5963E-09 4.00
5 0.4091E-06 3.99 0.1592E-08 4.97
4 6 0.2568E-07 3.99 0.5026E-10 4.99
7 0.1608E-08 4.00 0.1610E-11 4.96
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3871E-01 1.00 0.3306E-03 1.99
1 7 0.1937E-01 1.00 0.8279E-04 2.00
8 0.9685E-02 1.00 0.2070E-04 2.00
6 0.4131E-03 1.98 0.1783E-05 2.95
2 7 0.1038E-03 1.99 0.2268E-06 2.97
8 0.2602E-04 2.00 0.2859E-07 2.99
5 0.2925E-04 2.99 0.1515E-06 3.98
3 6 0.3665E-05 3.00 0.9518E-08 3.99
7 0.4587E-06 3.00 0.5963E-09 4.00
5 0.4091E-06 3.99 0.1592E-08 4.97
4 6 0.2568E-07 3.99 0.5026E-10 4.99
7 0.1608E-08 4.00 0.1610E-11 4.96
Table 5.2.  Example 2. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on rectangular grids shown in Figure 5.2
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.120E-02 2.01 0.141E-01 2.00
1 7 0.300E-03 2.00 0.354E-02 2.00
8 0.749E-04 2.00 0.885E-03 2.00
6 0.5734E-03 2.00 0.1482E-05 3.00
2 7 0.1434E-03 2.00 0.1852E-06 3.00
8 0.3584E-04 2.00 0.2314E-07 3.00
5 0.3645E-04 3.00 0.1360E-06 3.99
3 6 0.4559E-05 3.00 0.8517E-08 4.00
7 0.5699E-06 3.00 0.5326E-09 4.00
5 0.4222E-06 4.00 0.9119E-09 5.01
4 6 0.2639E-07 4.00 0.2846E-10 5.00
7 0.1650E-08 4.00 0.1110E-11 4.68
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.120E-02 2.01 0.141E-01 2.00
1 7 0.300E-03 2.00 0.354E-02 2.00
8 0.749E-04 2.00 0.885E-03 2.00
6 0.5734E-03 2.00 0.1482E-05 3.00
2 7 0.1434E-03 2.00 0.1852E-06 3.00
8 0.3584E-04 2.00 0.2314E-07 3.00
5 0.3645E-04 3.00 0.1360E-06 3.99
3 6 0.4559E-05 3.00 0.8517E-08 4.00
7 0.5699E-06 3.00 0.5326E-09 4.00
5 0.4222E-06 4.00 0.9119E-09 5.01
4 6 0.2639E-07 4.00 0.2846E-10 5.00
7 0.1650E-08 4.00 0.1110E-11 4.68
Table 5.3.  Example 3. The $ P_k-P_{k-1}-[P_{k+1}]^2 $ element, on rectangular grids shown in Figure 5.3
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.141E-01 2.00 0.120E-02 2.01
1 7 0.354E-02 2.00 0.300E-03 2.00
8 0.885E-03 2.00 0.749E-04 2.00
6 0.158E-03 3.00 0.113E-05 4.00
2 7 0.197E-04 3.00 0.709E-07 4.00
8 0.246E-05 3.00 0.444E-08 4.00
4 0.251E-03 4.80 0.409E-05 5.28
3 5 0.143E-04 4.13 0.128E-06 4.99
6 0.889E-06 4.01 0.407E-08 4.98
$ k $ $ {{\mathcal T}}_l $ $ {{|||}} Q_hu-u_h{{|||}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.141E-01 2.00 0.120E-02 2.01
1 7 0.354E-02 2.00 0.300E-03 2.00
8 0.885E-03 2.00 0.749E-04 2.00
6 0.158E-03 3.00 0.113E-05 4.00
2 7 0.197E-04 3.00 0.709E-07 4.00
8 0.246E-05 3.00 0.444E-08 4.00
4 0.251E-03 4.80 0.409E-05 5.28
3 5 0.143E-04 4.13 0.128E-06 4.99
6 0.889E-06 4.01 0.407E-08 4.98
Table 5.4.  Example 4. The $ P_k-P_{k-1}-[P_{k+2}]^2 $ element, on polygonal grids shown in Figure 5.4
$ k $ $ {{\mathcal T}}_l $ $ {{|\hspace{-.02in}|\hspace{-.02in}|}} Q_hu-u_h{{|\hspace{-.02in}|\hspace{-.02in}|}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3735E-01 1.00 0.7856E-04 2.00
1 7 0.1868E-01 1.00 0.1966E-04 2.00
8 0.9339E-02 1.00 0.4916E-05 2.00
5 0.1504E-02 1.98 0.3242E-05 2.95
2 6 0.3782E-03 1.99 0.4131E-06 2.97
7 0.9482E-04 2.00 0.5216E-07 2.99
4 0.1267E-03 2.97 0.4106E-06 3.95
3 5 0.1600E-04 2.99 0.2636E-07 3.96
6 0.2010E-05 2.99 0.1673E-08 3.98
2 0.5517E-03 3.98 0.5905E-05 5.26
4 3 0.3518E-04 3.97 0.1699E-06 5.12
4 0.2234E-05 3.98 0.5253E-08 5.02
$ k $ $ {{\mathcal T}}_l $ $ {{|\hspace{-.02in}|\hspace{-.02in}|}} Q_hu-u_h{{|\hspace{-.02in}|\hspace{-.02in}|}} $ Rate $ \|Q_hu-u_h\| $ Rate
6 0.3735E-01 1.00 0.7856E-04 2.00
1 7 0.1868E-01 1.00 0.1966E-04 2.00
8 0.9339E-02 1.00 0.4916E-05 2.00
5 0.1504E-02 1.98 0.3242E-05 2.95
2 6 0.3782E-03 1.99 0.4131E-06 2.97
7 0.9482E-04 2.00 0.5216E-07 2.99
4 0.1267E-03 2.97 0.4106E-06 3.95
3 5 0.1600E-04 2.99 0.2636E-07 3.96
6 0.2010E-05 2.99 0.1673E-08 3.98
2 0.5517E-03 3.98 0.5905E-05 5.26
4 3 0.3518E-04 3.97 0.1699E-06 5.12
4 0.2234E-05 3.98 0.5253E-08 5.02
[1]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020184

[3]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020096

[4]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[5]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020196

[6]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[7]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086

[8]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, , () : -. doi: 10.3934/era.2020097

[9]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[10]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, , () : -. doi: 10.3934/era.2020089

[12]

Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417

[13]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[14]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[15]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[16]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[17]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[18]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[19]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[20]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]