
-
Previous Article
Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection
- DCDS-B Home
- This Issue
-
Next Article
Pullback attractors for a weakly damped wave equation with delays and sup-cubic nonlinearity
Optimal control of an avian influenza model with multiple time delays in state and control variables
1. | School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China |
2. | Xinhua College, Ningxia University, Yinchuan, 750021, China |
3. | School of Mathematical and Natural Sciences, Arizona State University, AZ, USA |
In this paper, we consider an optimal control model governed by a class of delay differential equation, which describe the spread of avian influenza virus from the poultry to human. We take three control variables into the optimal control model, namely: slaughtering to the susceptible and infected poultry ($ u_{1}(t) $), educational campaign to the susceptible human population ($ u_{2}(t) $) and treatment to infected population ($ u_{3}(t) $). The model involves two time delays that stand for the incubation periods of avian influenza virus in the infective poultry and human populations. We derive first order necessary conditions for existence of the optimal control and perform several numerical simulations. Numerical results show that different control strategies have different effects on controlling the outbreak of avian influenza. At the same time, we discuss the influence of time delays on objective function and conclude that the spread of avian influenza will slow down as the time delays increase.
References:
[1] |
A. Abta, A. Kaddar and H. T. Alaoui,
Global stability for delay SIR and SEIR epidemic models with saturated incidence rates, Electronic Journal of Differential Equations, 2012 (2012), 1-13.
|
[2] |
C. Bao, L. Cui and M. Zhou et al.,
Live-animal markets and influenza a (H7N9) virus infection, New England Journal of Medicine, 368 (2013), 2337-2339.
doi: 10.1056/NEJMc1306100. |
[3] |
E. B. M. Bashier and K. C. Patidar,
Optimal control of an epidemiological model with multiple time delays, Applied Mathematics and Computation, 292 (2017), 47-56.
doi: 10.1016/j.amc.2016.07.009. |
[4] |
L. Bourouiba, S. A. Gourley, R. Liu and J. Wu,
The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71 (2011), 487-516.
doi: 10.1137/100803110. |
[5] |
F. Chen and J. Cui, Cross-species epidemic dynamic model of influenza, in 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, 2016.
doi: 10.1109/CISP-BMEI.2016.7852965. |
[6] |
Z. Chen and Z. Xu,
A delayed diffusive influenza model with two-strain and two vaccinations, Applied Mathematics and Computation, 349 (2019), 439-453.
doi: 10.1016/j.amc.2018.12.065. |
[7] |
N. S. Chong, J. M. Tchuenche and R. J. Smith,
A mathematical model of avian influenza with half-saturated incidence, Theory in Biosciences, 133 (2014), 23-38.
doi: 10.1007/s12064-013-0183-6. |
[8] |
E. Claas, A. Osterhaus and R. Van-Beek,
Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, The Lancet, 351 (1998), 472-477.
doi: 10.1016/S0140-6736(97)11212-0. |
[9] |
C. A. Y. E. Committee, China agriculture yearbook, 2012. Google Scholar |
[10] |
W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, Springer Verlag, New York, 1975. |
[11] |
H. Gaff and E. Schaefer,
Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6 (2009), 469-492.
doi: 10.3934/mbe.2009.6.469. |
[12] |
N. Gao, Z. Lu and B. Cao,
Clinical findings in 111 cases of influenza A (H7N9) virus infection, New England Journal of Medicine, 369 (2013), 1869-1869.
doi: 10.1056/NEJMoa1305584. |
[13] |
R. Gao, B. Cao and Y. Hu,
Human infection with a novel avian-origin influenza A (H7N9) virus, New England Journal of Medicine, 368 (2013), 1888-1897.
doi: 10.1056/NEJMoa1304459. |
[14] |
L. Göllmann, D. Kern and H. Maurer,
Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Applications and Methods, 30 (2009), 341-365.
doi: 10.1002/oca.843. |
[15] |
S. Iwami, Y. Takeuchi, A. Korobeinikov and X. Liu,
Prevention of avian influenza epidemic: what policy should we choose?, Journal of Theoretical Biology, 252 (2008), 732-741.
doi: 10.1016/j.jtbi.2008.02.020. |
[16] |
S. Iwami, Y. Takeuchi and X. Liu,
Avian-human influenza epidemic model, Mathematical Biosciences, 207 (2007), 1-25.
doi: 10.1016/j.mbs.2006.08.001. |
[17] |
S. Iwami, Y. Takeuchi and X. Liu,
Avian flu pandemic: Can we prevent it?, Journal of Theoretical Biology, 257 (2009), 181-190.
doi: 10.1016/j.jtbi.2008.11.011. |
[18] |
S. Iwami, Y. Takeuchi, X. Liu and S. Nakaoka,
A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259 (2009), 219-228.
doi: 10.1016/j.jtbi.2009.03.040. |
[19] |
E. Jung, S. Iwami and Y. Takeuchi,
Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220-229.
doi: 10.1016/j.jtbi.2009.05.031. |
[20] |
T. Kang, Q. Zhang and L. Rong, A delayed avian influenza model with avian slaughter: Stability analysis and optimal control, Physica A: Statistical Mechanics and its Applications, 529 (2019), 121544.
doi: 10.1016/j.physa.2019.121544. |
[21] |
M. J. Keeling and P. Rohani, Modeling infectious diseases in humans and animals, Princeton
University Press, 2008. |
[22] |
A. Lahrouz, H. El Mahjour and A. Settati,
Dynamics and optimal control of a non-linear epidemic model with relapse and cure, Physica A: Statistical Mechanics and its Applications, 496 (2018), 299-317.
doi: 10.1016/j.physa.2018.01.007. |
[23] |
D. Liu, W. Shi and Y. Shi,
Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: Phylogenetic, structural, and coalescent analyses, The Lancet, 381 (2013), 1926-1932.
doi: 10.1016/S0140-6736(13)60938-1. |
[24] |
S. Liu, L. Pang, S. Ruan and X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Computational and Mathematical Methods in Medicine, 2015, Article ID 913726.
doi: 10.1155/2015/913726. |
[25] |
S. Liu, S. Ruan and X. Zhang,
On avian influenza epidemic models with time delay, Theory in Biosciences, 134 (2015), 75-82.
doi: 10.1007/s12064-015-0212-8. |
[26] |
S. Liu, S. Ruan and X. Zhang,
Nonlinear dynamics of avian influenza epidemic models, Mathematical Biosciences, 283 (2017), 118-135.
doi: 10.1016/j.mbs.2016.11.014. |
[27] |
F. K. Mbabazi, J. Y. T. Mugisha and M. Kimathi,
Modeling the within-host co-infection of influenza {A} virus and pneumococcus, Applied Mathematics and Computation, 339 (2018), 488-506.
doi: 10.1016/j.amc.2018.07.031. |
[28] |
O. P. Misra and D. K. Mishra,
Spread and control of influenza in two groups: A model, Applied Mathematics and Computation, 219 (2013), 7982-7996.
doi: 10.1016/j.amc.2013.02.050. |
[29] |
G. P. Samanta,
Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay, Mathematical and Computer Modelling, 52 (2010), 1794-1811.
doi: 10.1016/j.mcm.2010.07.006. |
[30] |
S. Sharma, A. Mondal and A. K. Pal,
Stability analysis and optimal control of avian influenza virus A with time delays, International Journal of Dynamics and Control, 6 (2018), 1351-1366.
doi: 10.1007/s40435-017-0379-6. |
[31] |
Z. Shi, X. Zhang and D. Jiang,
Dynamics of an avian influenza model with half-saturated incidence, Applied Mathematics and Computation, 355 (2019), 399-416.
doi: 10.1016/j.amc.2019.02.070. |
[32] |
P. Van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[33] |
A. Wang and Y. Xiao,
A filippov system describing media effects on the spread of infectious diseases, Nonlinear Analysis: Hybrid Systems, 11 (2014), 84-97.
doi: 10.1016/j.nahs.2013.06.005. |
[34] |
World Health Organization, WHO risk assessments of human infection with avian influenza A(H7N9) virus, 2017, https://www.who.int/influenza/human_animal_interface/influenza_h7n9/Risk_Assessment/en/. Google Scholar |
[35] |
Y. Xiao, X. Sun and S. Tang,
Transmission potential of the novel avian influenza A(H7N9) infection in mainland China, Journal of Theoretical Biology, 352 (2014), 1-5.
doi: 10.1016/j.jtbi.2014.02.038. |
[36] |
H. Yoko, K. Yoshinari and Y. Takehisa,
Potential risk associated with animal culling and disposal during the foot-and-mouth disease epidemic in japan in 2010, Research in Veterinary Science, 102 (2015), 228-230.
doi: 10.1016/j.rvsc.2015.08.017. |
[37] |
X. Zhang,
Global dynamics of a stochastic avian-human influenza epidemic model with logistic growth for avian population, Nonlinear Dynamics, 90 (2017), 2331-2343.
doi: 10.1007/s11071-017-3806-5. |
[38] |
X. Zhang and X. Liu,
Backward bifurcation of an epidemic model with saturated treatment function, Journal of Mathematical Analysis and Applications, 348 (2008), 433-443.
doi: 10.1016/j.jmaa.2008.07.042. |
show all references
References:
[1] |
A. Abta, A. Kaddar and H. T. Alaoui,
Global stability for delay SIR and SEIR epidemic models with saturated incidence rates, Electronic Journal of Differential Equations, 2012 (2012), 1-13.
|
[2] |
C. Bao, L. Cui and M. Zhou et al.,
Live-animal markets and influenza a (H7N9) virus infection, New England Journal of Medicine, 368 (2013), 2337-2339.
doi: 10.1056/NEJMc1306100. |
[3] |
E. B. M. Bashier and K. C. Patidar,
Optimal control of an epidemiological model with multiple time delays, Applied Mathematics and Computation, 292 (2017), 47-56.
doi: 10.1016/j.amc.2016.07.009. |
[4] |
L. Bourouiba, S. A. Gourley, R. Liu and J. Wu,
The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71 (2011), 487-516.
doi: 10.1137/100803110. |
[5] |
F. Chen and J. Cui, Cross-species epidemic dynamic model of influenza, in 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, 2016.
doi: 10.1109/CISP-BMEI.2016.7852965. |
[6] |
Z. Chen and Z. Xu,
A delayed diffusive influenza model with two-strain and two vaccinations, Applied Mathematics and Computation, 349 (2019), 439-453.
doi: 10.1016/j.amc.2018.12.065. |
[7] |
N. S. Chong, J. M. Tchuenche and R. J. Smith,
A mathematical model of avian influenza with half-saturated incidence, Theory in Biosciences, 133 (2014), 23-38.
doi: 10.1007/s12064-013-0183-6. |
[8] |
E. Claas, A. Osterhaus and R. Van-Beek,
Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, The Lancet, 351 (1998), 472-477.
doi: 10.1016/S0140-6736(97)11212-0. |
[9] |
C. A. Y. E. Committee, China agriculture yearbook, 2012. Google Scholar |
[10] |
W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, Springer Verlag, New York, 1975. |
[11] |
H. Gaff and E. Schaefer,
Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6 (2009), 469-492.
doi: 10.3934/mbe.2009.6.469. |
[12] |
N. Gao, Z. Lu and B. Cao,
Clinical findings in 111 cases of influenza A (H7N9) virus infection, New England Journal of Medicine, 369 (2013), 1869-1869.
doi: 10.1056/NEJMoa1305584. |
[13] |
R. Gao, B. Cao and Y. Hu,
Human infection with a novel avian-origin influenza A (H7N9) virus, New England Journal of Medicine, 368 (2013), 1888-1897.
doi: 10.1056/NEJMoa1304459. |
[14] |
L. Göllmann, D. Kern and H. Maurer,
Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Applications and Methods, 30 (2009), 341-365.
doi: 10.1002/oca.843. |
[15] |
S. Iwami, Y. Takeuchi, A. Korobeinikov and X. Liu,
Prevention of avian influenza epidemic: what policy should we choose?, Journal of Theoretical Biology, 252 (2008), 732-741.
doi: 10.1016/j.jtbi.2008.02.020. |
[16] |
S. Iwami, Y. Takeuchi and X. Liu,
Avian-human influenza epidemic model, Mathematical Biosciences, 207 (2007), 1-25.
doi: 10.1016/j.mbs.2006.08.001. |
[17] |
S. Iwami, Y. Takeuchi and X. Liu,
Avian flu pandemic: Can we prevent it?, Journal of Theoretical Biology, 257 (2009), 181-190.
doi: 10.1016/j.jtbi.2008.11.011. |
[18] |
S. Iwami, Y. Takeuchi, X. Liu and S. Nakaoka,
A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259 (2009), 219-228.
doi: 10.1016/j.jtbi.2009.03.040. |
[19] |
E. Jung, S. Iwami and Y. Takeuchi,
Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220-229.
doi: 10.1016/j.jtbi.2009.05.031. |
[20] |
T. Kang, Q. Zhang and L. Rong, A delayed avian influenza model with avian slaughter: Stability analysis and optimal control, Physica A: Statistical Mechanics and its Applications, 529 (2019), 121544.
doi: 10.1016/j.physa.2019.121544. |
[21] |
M. J. Keeling and P. Rohani, Modeling infectious diseases in humans and animals, Princeton
University Press, 2008. |
[22] |
A. Lahrouz, H. El Mahjour and A. Settati,
Dynamics and optimal control of a non-linear epidemic model with relapse and cure, Physica A: Statistical Mechanics and its Applications, 496 (2018), 299-317.
doi: 10.1016/j.physa.2018.01.007. |
[23] |
D. Liu, W. Shi and Y. Shi,
Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: Phylogenetic, structural, and coalescent analyses, The Lancet, 381 (2013), 1926-1932.
doi: 10.1016/S0140-6736(13)60938-1. |
[24] |
S. Liu, L. Pang, S. Ruan and X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Computational and Mathematical Methods in Medicine, 2015, Article ID 913726.
doi: 10.1155/2015/913726. |
[25] |
S. Liu, S. Ruan and X. Zhang,
On avian influenza epidemic models with time delay, Theory in Biosciences, 134 (2015), 75-82.
doi: 10.1007/s12064-015-0212-8. |
[26] |
S. Liu, S. Ruan and X. Zhang,
Nonlinear dynamics of avian influenza epidemic models, Mathematical Biosciences, 283 (2017), 118-135.
doi: 10.1016/j.mbs.2016.11.014. |
[27] |
F. K. Mbabazi, J. Y. T. Mugisha and M. Kimathi,
Modeling the within-host co-infection of influenza {A} virus and pneumococcus, Applied Mathematics and Computation, 339 (2018), 488-506.
doi: 10.1016/j.amc.2018.07.031. |
[28] |
O. P. Misra and D. K. Mishra,
Spread and control of influenza in two groups: A model, Applied Mathematics and Computation, 219 (2013), 7982-7996.
doi: 10.1016/j.amc.2013.02.050. |
[29] |
G. P. Samanta,
Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay, Mathematical and Computer Modelling, 52 (2010), 1794-1811.
doi: 10.1016/j.mcm.2010.07.006. |
[30] |
S. Sharma, A. Mondal and A. K. Pal,
Stability analysis and optimal control of avian influenza virus A with time delays, International Journal of Dynamics and Control, 6 (2018), 1351-1366.
doi: 10.1007/s40435-017-0379-6. |
[31] |
Z. Shi, X. Zhang and D. Jiang,
Dynamics of an avian influenza model with half-saturated incidence, Applied Mathematics and Computation, 355 (2019), 399-416.
doi: 10.1016/j.amc.2019.02.070. |
[32] |
P. Van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[33] |
A. Wang and Y. Xiao,
A filippov system describing media effects on the spread of infectious diseases, Nonlinear Analysis: Hybrid Systems, 11 (2014), 84-97.
doi: 10.1016/j.nahs.2013.06.005. |
[34] |
World Health Organization, WHO risk assessments of human infection with avian influenza A(H7N9) virus, 2017, https://www.who.int/influenza/human_animal_interface/influenza_h7n9/Risk_Assessment/en/. Google Scholar |
[35] |
Y. Xiao, X. Sun and S. Tang,
Transmission potential of the novel avian influenza A(H7N9) infection in mainland China, Journal of Theoretical Biology, 352 (2014), 1-5.
doi: 10.1016/j.jtbi.2014.02.038. |
[36] |
H. Yoko, K. Yoshinari and Y. Takehisa,
Potential risk associated with animal culling and disposal during the foot-and-mouth disease epidemic in japan in 2010, Research in Veterinary Science, 102 (2015), 228-230.
doi: 10.1016/j.rvsc.2015.08.017. |
[37] |
X. Zhang,
Global dynamics of a stochastic avian-human influenza epidemic model with logistic growth for avian population, Nonlinear Dynamics, 90 (2017), 2331-2343.
doi: 10.1007/s11071-017-3806-5. |
[38] |
X. Zhang and X. Liu,
Backward bifurcation of an epidemic model with saturated treatment function, Journal of Mathematical Analysis and Applications, 348 (2008), 433-443.
doi: 10.1016/j.jmaa.2008.07.042. |









Step 1: | for |
|
|
end for | |
for |
|
|
|
end for | |
Step 2: | for |
|
|
|
|
|
|
|
|
|
|
|
|
for |
|
|
|
end for | |
|
|
|
|
|
|
|
|
end for | |
Step 3: | for |
|
|
|
|
end for | |
$\dagger$ The $\text{Temp}_i (1\leq i\leq 6)$ is defined in C. |
Step 1: | for |
|
|
end for | |
for |
|
|
|
end for | |
Step 2: | for |
|
|
|
|
|
|
|
|
|
|
|
|
for |
|
|
|
end for | |
|
|
|
|
|
|
|
|
end for | |
Step 3: | for |
|
|
|
|
end for | |
$\dagger$ The $\text{Temp}_i (1\leq i\leq 6)$ is defined in C. |
Parameter | Value | Source of data |
|
[5,9] | |
[5], | ||
[5,9] | ||
[5] | ||
[5] | ||
[5] | ||
[26,37] | ||
0.001 per day | [26,37] | |
0.1 per day | [26,37] | |
0.5 | Assumed | |
0.1 | Assumed | |
0.01 | Assumed | |
0.03 | Assumed | |
0.01 | Assumed | |
0.01 | Assumed |
Parameter | Value | Source of data |
|
[5,9] | |
[5], | ||
[5,9] | ||
[5] | ||
[5] | ||
[5] | ||
[26,37] | ||
0.001 per day | [26,37] | |
0.1 per day | [26,37] | |
0.5 | Assumed | |
0.1 | Assumed | |
0.01 | Assumed | |
0.03 | Assumed | |
0.01 | Assumed | |
0.01 | Assumed |
Value of control |
Value of objective function ( |
|
|
Value of control |
Value of objective function ( |
|
|
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[2] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[3] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[4] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[5] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[6] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[7] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[8] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[9] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[10] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[11] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[12] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[13] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[14] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[15] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[16] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[17] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[18] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[19] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[20] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]