doi: 10.3934/dcdsb.2020280

The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration

1. 

School of Mathematical Sciences and Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

2. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China

* Corresponding author: Xing Liang

Dedicated to Professor Sze-Bi Hsu on the occasion of his 70th birthday

Received  May 2020 Revised  August 2020 Published  September 2020

Fund Project: Liang's research is supported by the National Natural Science Foundation of China (11971454) and the Fundamental Research Funds for the Central Universities; Zhang's research is supported by the National Natural Science Foundation of China(11901138) and Natural Science Foundation of Shandong Province (ZR2019QA006)

This paper focuses on an optimization problem arising in population biology. We investigate the effect of the resources distribution and the migration rate on the total population size of some species, which migrates among patches with the identical probability and grows logistically in each patch. We aim to maximize the total population size by the distribution of resources and the rate of migration.

Citation: Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020280
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.  doi: 10.1137/060672522.  Google Scholar

[2]

X. BaiX. He and F. Li, An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.  doi: 10.1090/proc/12873.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2004. doi: 10.1002/0470871296.  Google Scholar

[5]

W. DingH. FinottiS. LenhartY. Lou and Q. Ye, Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.  doi: 10.1016/j.nonrwa.2009.01.015.  Google Scholar

[6]

F. G. Frobenius, Über matrizen aus nicht negativen elementen, S.-B. Deutsch. Akad. Wiss. Berlin, v. 1912,456–477. Google Scholar

[7]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[8]

Y. Lou, Some reaction diffusion models in spatial ecology, Sci. Sin. Math., 45 (2015), 1619-1634.  doi: 10.1360/N012015-00233.  Google Scholar

[9]

I. MazariG. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1-35.  doi: 10.1016/j.matpur.2019.10.008.  Google Scholar

[10]

K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57, (2018), Paper No. 80, 14 pp. doi: 10.1007/s00526-018-1353-7.  Google Scholar

[11]

O. Perron, Zur theorie der matrices, Math. Ann., 64 (1907), 248-263.  doi: 10.1007/BF01449896.  Google Scholar

[12]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, 2008.  Google Scholar

[13]

X.-Q. Zhao, Dynamical Systems in Population Biology, $2^{nd}$ edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.  doi: 10.1137/060672522.  Google Scholar

[2]

X. BaiX. He and F. Li, An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.  doi: 10.1090/proc/12873.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2004. doi: 10.1002/0470871296.  Google Scholar

[5]

W. DingH. FinottiS. LenhartY. Lou and Q. Ye, Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.  doi: 10.1016/j.nonrwa.2009.01.015.  Google Scholar

[6]

F. G. Frobenius, Über matrizen aus nicht negativen elementen, S.-B. Deutsch. Akad. Wiss. Berlin, v. 1912,456–477. Google Scholar

[7]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[8]

Y. Lou, Some reaction diffusion models in spatial ecology, Sci. Sin. Math., 45 (2015), 1619-1634.  doi: 10.1360/N012015-00233.  Google Scholar

[9]

I. MazariG. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1-35.  doi: 10.1016/j.matpur.2019.10.008.  Google Scholar

[10]

K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57, (2018), Paper No. 80, 14 pp. doi: 10.1007/s00526-018-1353-7.  Google Scholar

[11]

O. Perron, Zur theorie der matrices, Math. Ann., 64 (1907), 248-263.  doi: 10.1007/BF01449896.  Google Scholar

[12]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, 2008.  Google Scholar

[13]

X.-Q. Zhao, Dynamical Systems in Population Biology, $2^{nd}$ edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[1]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[2]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[3]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[4]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[5]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[6]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[7]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[11]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[12]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[13]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[14]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[15]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[16]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[17]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[18]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[19]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[20]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]