-
Previous Article
Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion
- DCDS-B Home
- This Issue
-
Next Article
Norm inflation for the Boussinesq system
The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
1. | School of Mathematical Sciences and Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China |
2. | Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China |
This paper focuses on an optimization problem arising in population biology. We investigate the effect of the resources distribution and the migration rate on the total population size of some species, which migrates among patches with the identical probability and grows logistically in each patch. We aim to maximize the total population size by the distribution of resources and the rate of migration.
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[3] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
doi: 10.1137/1.9781611971262. |
[4] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2004.
doi: 10.1002/0470871296. |
[5] |
W. Ding, H. Finotti, S. Lenhart, Y. Lou and Q. Ye,
Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.
doi: 10.1016/j.nonrwa.2009.01.015. |
[6] |
F. G. Frobenius, Über matrizen aus nicht negativen elementen, S.-B. Deutsch. Akad. Wiss. Berlin, v. 1912,456–477. Google Scholar |
[7] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[8] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Sci. Sin. Math., 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[9] |
I. Mazari, G. Nadin and Y. Privat,
Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1-35.
doi: 10.1016/j.matpur.2019.10.008. |
[10] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57, (2018), Paper No. 80, 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[11] |
O. Perron,
Zur theorie der matrices, Math. Ann., 64 (1907), 248-263.
doi: 10.1007/BF01449896. |
[12] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, 2008. |
[13] |
X.-Q. Zhao, Dynamical Systems in Population Biology, $2^{nd}$ edition, Springer, New York, 2017.
doi: 10.1007/978-3-319-56433-3. |
show all references
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[3] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
doi: 10.1137/1.9781611971262. |
[4] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2004.
doi: 10.1002/0470871296. |
[5] |
W. Ding, H. Finotti, S. Lenhart, Y. Lou and Q. Ye,
Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.
doi: 10.1016/j.nonrwa.2009.01.015. |
[6] |
F. G. Frobenius, Über matrizen aus nicht negativen elementen, S.-B. Deutsch. Akad. Wiss. Berlin, v. 1912,456–477. Google Scholar |
[7] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[8] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Sci. Sin. Math., 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[9] |
I. Mazari, G. Nadin and Y. Privat,
Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., 134 (2020), 1-35.
doi: 10.1016/j.matpur.2019.10.008. |
[10] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57, (2018), Paper No. 80, 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[11] |
O. Perron,
Zur theorie der matrices, Math. Ann., 64 (1907), 248-263.
doi: 10.1007/BF01449896. |
[12] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, 2008. |
[13] |
X.-Q. Zhao, Dynamical Systems in Population Biology, $2^{nd}$ edition, Springer, New York, 2017.
doi: 10.1007/978-3-319-56433-3. |
[1] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[2] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[3] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[4] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[5] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[6] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[7] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[8] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[9] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[10] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[11] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[12] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[13] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[14] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[15] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[16] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[17] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[18] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[19] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[20] |
Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]