[1]
|
N. Bellomo, Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach, Birkhäuser Boston, Inc., Boston, MA, 2008.
|
[2]
|
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.
|
[3]
|
X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Zeitschrift für Angewandte Mathematik und Physik, 67 (2016), Art. 11, 13 pp.
doi: 10.1007/s00033-015-0601-3.
|
[4]
|
S. B. Carter, Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260.
doi: 10.1038/213256a0.
|
[5]
|
F. Chalub, Y. Dolak-Struss, P. Markowich, D. Oelz, C. Schmeiser and A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in Applied Sciences, 16 (2006), 1173-1197.
doi: 10.1142/S0218202506001509.
|
[6]
|
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1685-1734.
doi: 10.1142/S0218202505000947.
|
[7]
|
M. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.
doi: 10.3934/nhm.2006.1.399.
|
[8]
|
A. Chauvière, T. Hillen and L. Preziosi, Modeling cell movement in anisotropic and heterogeneous network tissues, Netw. Heterog. Media, 2 (2007), 333-357.
doi: 10.3934/nhm.2007.2.333.
|
[9]
|
L. Chen, K. Painter, C. Surulescu and A. Zhigun, Mathematical models for cell migration: A nonlocal perspective, Philosophical Transactions of the Royal Society B: Biological Sciences, 375 (2020), 20190379.
|
[10]
|
Z. Chen and Y. Tao, Large-data solutions in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Applicandae Mathematicae, 163 (2018), 129-143.
doi: 10.1007/s10440-018-0216-8.
|
[11]
|
M. Conte and C. Surulescu, Mathematical modeling of vascularized glioma development under the go-or-grow dichotomy, arXiv: 2007.12204.
|
[12]
|
G. Corbin, C. Engwer, A. Klar, J. Nieto, J. Soler, C. Surulescu and M. Wenske, On a model for glioma invasion with anisotropy- and hypoxia-triggered motility enhancement, arXiv: 2006.12322.
|
[13]
|
G. Corbin, A. Hunt, A. Klar, F. Schneider and C. Surulescu, Higher-order models for glioma invasion: From a two-scale description to effective equations for mass density and momentum, Mathematical Models and Methods in Applied Sciences, 28 (2018), 1771-1800.
doi: 10.1142/S0218202518400055.
|
[14]
|
P. Domschke, D. Trucu, A. Gerisch and M. A. J. Chaplain, Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns, Journal of Theoretical Biology, 361 (2014), 41-60.
doi: 10.1016/j.jtbi.2014.07.010.
|
[15]
|
P. Domschke, D. Trucu, A. Gerisch and M. A. J. Chaplain, Structured models of cell migration incorporating molecular binding processes, J. Math. Biol., 75 (2017), 1517-1561.
doi: 10.1007/s00285-017-1120-y.
|
[16]
|
C. Engwer, T. Hillen, M. Knappitsch and C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, Journal of Mathematical Biology, 71 (2014), 551-582.
doi: 10.1007/s00285-014-0822-7.
|
[17]
|
C. Engwer, A. Hunt and C. Surulescu, Effective equations for anisotropic glioma spread with proliferation: A multiscale approach and comparisons with previous settings, Mathematical Medicine and Biology, 33 (2015), 435-459.
doi: 10.1093/imammb/dqv030.
|
[18]
|
C. Engwer, M. Knappitsch and C. Surulescu, A multiscale model for glioma spread including cell-tissue interactions and proliferation, Mathematical Biosciences and Engineering, 13 (2016), 443-460.
doi: 10.3934/mbe.2015011.
|
[19]
|
C. Engwer, C. Stinner and C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Math. Models Methods Appl. Sci., 27 (2017), 1355-1390.
doi: 10.1142/S0218202517400188.
|
[20]
|
S. M. Frisch and H. Francis, Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol., 124 (1994), 619-626.
doi: 10.1083/jcb.124.4.619.
|
[21]
|
A. Gerisch and M. A. J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theoret. Biol., 250 (2008), 684-704.
doi: 10.1016/j.jtbi.2007.10.026.
|
[22]
|
A. Giese, R. Bjerkvig, M. Berens and M. Westphal, Cost of migration: Invasion of malignant gliomas and implications for treatment, Journal of Clinical Oncology, 21 (2003), 1624-1636.
doi: 10.1200/JCO.2003.05.063.
|
[23]
|
A. Giese, L. Kluwe, B. Laube, H. Meissner, M. E. Berens and M. Westphal, Migration of human glioma cells on myelin, Neurosurgery, 38 (1996), 755-764.
doi: 10.1227/00006123-199604000-00026.
|
[24]
|
D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
doi: 10.1016/j.cell.2011.02.013.
|
[25]
|
D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society (EMS), Zürich, 2008.
|
[26]
|
H. Hatzikirou, D. Basanta, M. Simon, K. Schaller and A. Deutsch, Go or grow: The key to the emergence of invasion in tumour progression?, Mathematical Medicine and Biology, 29 (2010), 49-65.
doi: 10.1093/imammb/dqq011.
|
[27]
|
M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.
doi: 10.1080/03605309708821314.
|
[28]
|
T. Hillen, A classification of spikes and plateaus, SIAM Rev., 49 (2007), 35-51.
doi: 10.1137/050632427.
|
[29]
|
T. Hillen and K. J. A. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2008), 183-217.
doi: 10.1007/s00285-008-0201-3.
|
[30]
|
T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Mathematical Models and Methods in Applied Sciences, 23 (2013), 165-198.
doi: 10.1142/S0218202512500480.
|
[31]
|
S. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Analysis: Real World Applications, 22 (2015), 176-205.
doi: 10.1016/j.nonrwa.2014.08.008.
|
[32]
|
S. A. Hiremath and C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29 (2016), 851-914.
doi: 10.1088/0951-7715/29/3/851.
|
[33]
|
K. S. Hoek, O. M. Eichhoff, N. C. Schlegel, U. Dobbeling, N. Kobert, L. Schaerer, S. Hemmi and R. Dummer, In vivo switching of human melanoma cells between proliferative and invasive states, Cancer Research, 68 (2008), 650-656.
doi: 10.1158/0008-5472.CAN-07-2491.
|
[34]
|
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[35]
|
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.
|
[36]
|
X. Hu, L. Wang, C. Mu and L. Li, Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Comptes Rendus Mathematique, 355 (2017), 181-186.
doi: 10.1016/j.crma.2016.12.005.
|
[37]
|
A. Hunt and C. Surulescu, A multiscale modeling approach to glioma invasion with therapy, Vietnam Journal of Mathematics, 45 (2016), 221-240.
doi: 10.1007/s10013-016-0223-x.
|
[38]
|
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028.
|
[39]
|
Z. Jia and Z. Yang, Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion, Applied Mathematics Letters, 103 (2020), 106192, 6 pp.
doi: 10.1016/j.aml.2019.106192.
|
[40]
|
C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bulletin of the London Mathematical Society, 50 (2018), 598-618.
doi: 10.1112/blms.12160.
|
[41]
|
Y. Ke and J. Zheng, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31 (2018), 4602-4620.
doi: 10.1088/1361-6544/aad307.
|
[42]
|
J. Kelkel and C. Surulescu, On some models for cancer cell migration through tissue networks, Mathematical Biosciences and Engineering, 8 (2011), 575-589.
doi: 10.3934/mbe.2011.8.575.
|
[43]
|
J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150017, 25 pp.
doi: 10.1142/S0218202511500175.
|
[44]
|
E. Keller and L. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6.
|
[45]
|
C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), 139-181.
doi: 10.1016/S0168-9274(02)00138-1.
|
[46]
|
P. Kleihues, F. Soylemezoglu, B. Schäuble, B. Scheithauer and P. Burger, Histopathology, classification and grading of gliomas, Glia, 5 (1995), 211-221.
doi: 10.1002/glia.440150303.
|
[47]
|
D. A. Knopoff, J. Nieto and L. Urrutia, Numerical simulation of a multiscale cell motility model based on the kinetic theory of active particles, Symmetry, 11 (2019), 1003.
doi: 10.3390/sym11081003.
|
[48]
|
H. Knútsdóttir, E. Pálsson and L. Edelstein-Keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion, Journal of Theoretical Biology, 357 (2014), 184-199.
doi: 10.1016/j.jtbi.2014.04.031.
|
[49]
|
N. Kolbe, J. Kat'uchová, N. Sfakianakis, N. Hellmann and M. Lukáčová-Medvid'ová, A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model, Applied Mathematics and Computation, 273 (2016), 353-376.
doi: 10.1016/j.amc.2015.08.023.
|
[50]
|
N. Kolbe, M. Lukáčová-Medvid'ová, N. Sfakianakis and B. Wiebe, Numerical simulation of a contractivity based multiscale cancer invasion model, Multiscale Models in Mechano and Tumor Biology, Lect. Notes Comput. Sci. Eng., Springer, Cham, 122 (2017), 73-91.
doi: 10.1007/978-3-319-73371-5_4.
|
[51]
|
M. Krasnianski, K. Painter, C. Surulescu and A. Zhigun, Nonlocal and local models for taxis in cell migration: A rigorous limit procedure, arXiv: 1908.10287v2.
|
[52]
|
J. Lenz, Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy, Master thesis, TU Darmstadt, 2019
|
[53]
|
J. Li, Y. Ke and Y. Wang, Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source, Nonlinear Analysis: Real World Applications, 39 (2018), 261-277.
doi: 10.1016/j.nonrwa.2017.07.002.
|
[54]
|
J. Li and Y. Wang, Repulsion effects on boundedness in the higher dimensional fully parabolic attraction-repulsion chemotaxis system, Journal of Mathematical Analysis and Applications, 467 (2018), 1066-1079.
doi: 10.1016/j.jmaa.2018.07.051.
|
[55]
|
Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595.
doi: 10.1088/0951-7715/29/5/1564.
|
[56]
|
J. Liu and Y. Wang, A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, Mathematical Methods in the Applied Sciences, 40 (2017), 2107-2121.
doi: 10.1002/mma.4126.
|
[57]
|
J. Liu, J. Zheng and Y. Wang, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Z. Angew. Math. Phys., 67 (2016), Art. 21, 33 pp.
doi: 10.1007/s00033-016-0620-8.
|
[58]
|
J. Logan, P. White, B. Bentz and J. Powell, Model analysis of spatial patterns in mountain pine beetle outbreaks, Theoretical Population Biology, 53 (1998), 236-255.
|
[59]
|
T. Lorenz and C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2383-2436.
doi: 10.1142/S0218202514500249.
|
[60]
|
M. Luca, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003), 693-730.
|
[61]
|
P. K. Maini, Spatial and spatio-temporal patterns in a cell-haptotaxis model, Journal of Mathematical Biology, 27 (1989), 507-522.
doi: 10.1007/BF00288431.
|
[62]
|
A. Malandrino, M. Mak, R. Kamm and E. Moeendarbary, Complex mechanics of the heterogeneous extracellular matrix in cancer, Extreme Mechanics Letters, 21 (2018), 25-34.
|
[63]
|
D. Mallet, Mathematical modelling of the role of haptotaxis in tumour growth and invasion, PhD thesis, Queensland University of Technology.
|
[64]
|
MATLAB, Version 9.7.0.1216025 (R2019b) Update 1, The MathWorks Inc., Natick, Massachusetts, 2019b.
|
[65]
|
Y. Matsukado, C. MacCarty and J. Kernohan, The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice, Journal of Neurosurgery, 18 (1961), 636-644.
|
[66]
|
G. Meral, C. Stinner and C. Surulescu, A multiscale model for acid-mediated tumor invasion: Therapy approaches, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 135-142.
|
[67]
|
G. Meral, C. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 189-213.
doi: 10.3934/dcdsb.2015.20.189.
|
[68]
|
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007.
|
[69]
|
C. Morales-Rodrigo and J. I. Tello, Global existence and asymptotic behavior of a tumor angiogenesis model with chemotaxis and haptotaxis, Mathematical Models and Methods in Applied Sciences, 24 (2014), 427-464.
doi: 10.1142/S0218202513500553.
|
[70]
|
J. Nieto and L. Urrutia, A multiscale model of cell mobility: From a kinetic to a hydrodynamic description, Journal of Mathematical Analysis and Applications, 433 (2016), 1055-1071.
doi: 10.1016/j.jmaa.2015.08.042.
|
[71]
|
M. Orme and M. Chaplain, A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching, Mathematical Medicine and Biology, 13 (1996), 73-98.
|
[72]
|
K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, Journal of Theoretical Biology, 481 (2019), 162-182.
doi: 10.1016/j.jtbi.2018.06.019.
|
[73]
|
K. J. Painter, P. K. Maini and H. G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues, Journal of Mathematical Biology, 41 (2000), 285-314.
doi: 10.1007/s002850000035.
|
[74]
|
P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Journal of Differential Equations, 263 (2017), 1269-1292.
doi: 10.1016/j.jde.2017.03.016.
|
[75]
|
P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Mathematical Models and Methods in Applied Sciences, 28 (2018), 2211-2235.
doi: 10.1142/S0218202518400134.
|
[76]
|
P. Y. H. Pang and Y. Wang, Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis, Mathematical Models and Methods in Applied Sciences, 29 (2019), 1387-1412.
doi: 10.1142/S0218202519500246.
|
[77]
|
L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systemswith relaxation, J. Sci. Comput., 25 (2005), 129-155.
doi: 10.1007/s10915-004-4636-4.
|
[78]
|
J. R. Potts and M. A. Lewis, Spatial memory and taxis-driven pattern formation in model ecosystems, Bulletin of Mathematical Biology, 81 (2019), 2725-2747.
doi: 10.1007/s11538-019-00626-9.
|
[79]
|
N. Sfakianakis, N. Kolbe and M. Lukáčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bull. Math. Biol., 79 (2016), 209-235.
doi: 10.1007/s11538-016-0233-6.
|
[80]
|
N. Sfakianakis, A. Madzvamuse and M. A. J. Chaplain, A hybrid multiscale model for cancer invasion of the extracellular matrix, Multiscale Model Sim., 18 (2020), 824-850.
doi: 10.1137/18M1189026.
|
[81]
|
A. Silchenko and P. Tass, Mathematical modeling of chemotaxis and glial scarring around implanted electrodes, New Journal of Physics, 17 (2015), 023009.
|
[82]
|
C. Stinner, C. Surulescu and G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math., 80 (2015), 1300-1321.
doi: 10.1093/imamat/hxu055.
|
[83]
|
C. Stinner, C. Surulescu and A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Models Methods Appl. Sci., 26 (2016), 2163-2201.
doi: 10.1142/S021820251640011X.
|
[84]
|
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X.
|
[85]
|
M. Stubbs, P. McSheehy, J. Griffiths and L. Bashford, Causes and consequences of tumour acidity and implications for treatment, Molecular Medicine Today, 6 (2000), 15-19.
doi: 10.1016/S1357-4310(99)01615-9.
|
[86]
|
C. Surulescu and M. Winkler, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), European Journal of Applied Mathematics, in print, arXiv: 1904.11210.
|
[87]
|
S. Takumi, J. Verdone, J. Huang, U. Kahlert, J. Hernandez, G. Torga, J. Zarif, T. Epstein, R. Gatenby, A. McCartney, J. Elisseeff, S. Mooney, S. An and K. Pienta, Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells, Oncotarget, 6 (2015), 130-143.
|
[88]
|
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, Journal of Mathematical Analysis and Applications, 354 (2009), 60-69.
doi: 10.1016/j.jmaa.2008.12.039.
|
[89]
|
Y. Tao and C. Cui, A density-dependent chemotaxis-haptotaxis system modeling cancer invasion, Journal of Mathematical Analysis and Applications, 367 (2010), 612-624.
doi: 10.1016/j.jmaa.2010.02.015.
|
[90]
|
Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221-2238.
doi: 10.1088/0951-7715/21/10/002.
|
[91]
|
Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943.
|
[92]
|
Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM Journal on Mathematical Analysis, 47 (2015), 4229-4250.
doi: 10.1137/15M1014115.
|
[93]
|
Y. Tao and M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047-2067.
doi: 10.3934/cpaa.2019092.
|
[94]
|
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[95]
|
M. Van der Heiden, L. Cantley and C. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation, Science, 324 (2009), 1029-1033.
|
[96]
|
H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 631-644.
doi: 10.1137/0913035.
|
[97]
|
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, 32 (1979), 101-136.
|
[98]
|
D. Vig and C. Wolgemuth, Spatiotemporal evolution of erythema migrans, the hallmark rash of lyme disease, Biophysical Journal, 106 (2014), 763-768.
|
[99]
|
Y. Wang, Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Applied Mathematics Letters, 59 (2016), 122-126.
doi: 10.1016/j.aml.2016.03.019.
|
[100]
|
Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Journal of Differential Equations, 260 (2016), 1975-1989.
doi: 10.1016/j.jde.2015.09.051.
|
[101]
|
Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, Journal of Differential Equations, 260 (2016), 6960-6988.
doi: 10.1016/j.jde.2016.01.017.
|
[102]
|
B. A. Webb, M. Chimenti, M. P. Jacobson and D. L. Barber, Dysregulated pH: A perfect storm for cancer progression, Nature Reviews Cancer, 11 (2011), 671-677.
doi: 10.1038/nrc3110.
|
[103]
|
M. Winkler, Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, Journal de Mathématiques Pures et Appliquées, 112 (2018), 118-169.
doi: 10.1016/j.matpur.2017.11.002.
|
[104]
|
M. Winkler and C. Surulescu, Global weak solutions to a strongly degenerate haptotaxis model, Comm. Math. Sci., 15 (2017), 1581-1616.
doi: 10.4310/CMS.2017.v15.n6.a5.
|
[105]
|
T. Xiang and J. Zheng, A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source, Nonlinearity, 32 (2019), 4890-4911.
doi: 10.1088/1361-6544/ab41d5.
|
[106]
|
G.-F. Xiong and R. Xu, Function of cancer cell-derived extracellular matrix in tumor progression, Journal of Cancer Metastasis and Treatment, 2 (2016), 357-364.
doi: 10.20517/2394-4722.2016.08.
|
[107]
|
P. Zheng, C. Mu and X. Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion, Discr. Cont. Dyn. Syst. A, 36 (2016), 1737-1757.
doi: 10.3934/dcds.2016.36.1737.
|
[108]
|
P.-P. Zheng, L.-A. Severijnen, M. van der Weiden, R. Willemsen and J. Kros, Cell proliferation and migration are mutually exclusive cellular phenomena in vivo: Implications for cancer therapeutic strategies, Cell Cycle, 8 (2009), 950-951.
doi: 10.4161/cc.8.6.7851.
|
[109]
|
A. Zhigun, C. Surulescu and A. Hunt, A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis, Math Meth Appl Sci., 41 (2018), 2403-2428.
doi: 10.1002/mma.4749.
|
[110]
|
A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), Art. 146, 29 pp.
doi: 10.1007/s00033-016-0741-0.
|