\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A flow on $ S^2 $ presenting the ball as its minimal set

  • * Corresponding author: Luiz Fernando Gonçalves

    * Corresponding author: Luiz Fernando Gonçalves
Abstract Full Text(HTML) Figure(10) Related Papers Cited by
  • The main goal of this paper is to present the existence of a vector field tangent to the unit sphere $ S^2 $ such that $ S^2 $ itself is a minimal set. This is reached using a piecewise smooth (discontinuous) vector field and following the Filippov's convention on the switching manifold. As a consequence, none regularization process applied to the initial model can be topologically equivalent to it and we obtain a vector field tangent to $ S^2 $ without equilibria.

    Mathematics Subject Classification: Primary:34A36;34A12;37C10;37E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sliding Vector Field

    Figure 2.  The $ \omega $-limit of $ p $ is disconnected

    Figure 3.  Item (a) shows the projection of the trajectories of $ X $ on $ S^2 $ by $ \pi_N $. In (b) we have the projection of the trajectories of $ Y $ by $ \pi_S $.

    Figure 4.  Trajectories in $ S^2 $

    Figure 5.  Displacement function

    Figure 6.  Trajectories of the vector field $ Z_1 $

    Figure 7.  Trajectories of the vector field $ Z_2 $

    Figure 8.  Piecewise smooth vector field $ Z_1 $ and region $ K_1 $

    Figure 9.  Piecewise smooth vector field $ Z_2 $ and region $ K_2 $

    Figure 10.  Trajectory in $ S^2 $ passing through $ p = (-1,0,0) $

  • [1] D. C. BragaA. F. da Fonseca and L. F. Mello, Study of limit cycles in piecewise smooth perturbations of Hamiltonian centers via regularization method, Electronic Journal of Qualitative Theory of Differential Equations, 79 (2017), 1-13.  doi: 10.14232/ejqtde.2017.1.79.
    [2] L. E. J. Brouwer, On continuous vector distributions on surfaces, in Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), 11 (1909), 850–858, https://www.dwc.knaw.nl/DL/publications/PU00013599.pdf.
    [3] C. A. BuzziT. de Carvalho and R. D. Euzébio, Chaotic planar piecewise smooth vector fields with non-trivial minimal sets, Ergodic Theory and Dynamical Systems, 36 (2016), 458-469.  doi: 10.1017/etds.2014.67.
    [4] C. A. BuzziT. Carvalho and R. D. Euzébio, On Poincaré-Bendixson theorem and non-trivial minimal sets in planar nonsmooth vector fields, Publicacions Matemàtiques, 62 (2018), 113-131.  doi: 10.5565/PUBLMAT6211806.
    [5] T. Carvalho and L. F. Gonçalves, Combing the hairy ball using a vector field without equilibria, Journal of Dynamical and Control Systems, 26 (2020), 233-242.  doi: 10.1007/s10883-019-09446-5.
    [6] R. CristianoT. CarvalhoD. J. Tonon and D. J. Pagano, Hopf and Homoclinic bifurcations on the sliding vector field of switching systems in $\mathbb{R}^3$: A case study in power electronics, Physica D: Nonlinear Phenomena, 347 (2017), 12-20.  doi: 10.1016/j.physd.2017.02.005.
    [7] T. CarvalhoD. D. Novaes and L. F. Gonçalves, Sliding Shilnikov connection in Filippov-type predator-prey model, Nonlinear Dynamics, 100 (2020), 2973-2987. 
    [8] T. de Carvalho, On the closing lemma for planar piecewise smooth vector fields, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1174-1185.  doi: 10.1016/j.matpur.2016.04.006.
    [9] T. de Carvalho and D. J. Tonon, Generic bifurcations of planar Filippov systems via geometric singular perturbations, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 861-881. 
    [10] A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, 11 (1932), 333–376, http://eudml.org/doc/234887.
    [11] M. di BernardoK. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140. 
    [12] D. D. Dixon, Piecewise deterministic dynamics from the application of noise to singular equations of motion, Journal of Physics A: Mathematical and General, 28 (1995), 5539-5551. 
    [13] N. M. Drissa, Fixed Point, Game and Selection Theory: From the Hairy Ball Theorem to A Non Hair-Pulling Conversation, PhD thesis, Université Paris 1 Panthéon-Sorbonne, 2016, http://hdl.handle.net/10579/8840.
    [14] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications, 1st edition, Springer Netherlands, 1988. doi: 10.1007/978-94-015-7793-9.
    [15] C. Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory and Dynamical Systems, 6 (1986), 17-44.  doi: 10.1017/S0143385700003278.
    [16] A. Jacquemard and D. J. Tonon, Coupled systems of non-smooth differential equations, Bulletin des Sciences Mathématiques, 136 (2012), 239-255.  doi: 10.1016/j.bulsci.2012.01.006.
    [17] T. KousakaT. KidoT. UetaH. Kawakami and M. Abe, Analysis of border-collision bifurcation in a simple circuit, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), 2 (2000), 481-484. 
    [18] V. Křivan, On the gause predator-prey model with a refuge: A fresh look at the history, Journal of Theoretical Biology, 274 (2011), 67-73.  doi: 10.1016/j.jtbi.2011.01.016.
    [19] R. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 1st edition, Springer-Verlag Berlin Heidelberg, 2004.
    [20] J. LlibreP. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, Journal of Dynamics and Differential Equations, 19 (2007), 309-331. 
    [21] J. Llibre and M. A. Teixeira, Regularization of discontinuous vector fields in dimension three, Discrete & Continuous Dynamical Systems - A, 3 (1997), 235-241.  doi: 10.3934/dcds.1997.3.235.
    [22] J. Milnor, Analytic proofs of the "hairy ball theorem" and the brouwer fixed point theorem, The American Mathematical Monthly, 85 (1978), 521-524.  doi: 10.2307/2320860.
    [23] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 3rd edition, Springer-Verlag New York, 2001. doi: 10.1007/978-1-4613-0003-8.
    [24] S. H. PiltzM. A. Porter and P. K. Maini, Prey switching with a linear preference trade-off, SIAM Journal on Applied Dynamical Systems, 13 (2014), 658-682.  doi: 10.1137/130910920.
    [25] D. S. Rodrigues, P. F. A. Mancera, T. Carvalho and L. F. Gonçalves, Sliding mode control in a mathematical model to chemoimmunotherapy: The occurrence of typical singularities, Applied Mathematics and Computation, 387 (2020), 124782. doi: 10.1016/j.amc.2019.124782.
    [26] F. D. Rossa and F. Dercole, Generic and generalized boundary operating points in piecewise-linear (discontinuous) control systems, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 7714–7719.
    [27] A. J. Schwartz, A generalization of a Poincaré-Bendixson Theorem to closed two-dimensional manifolds, American Journal of Mathematics, 85 (1963), 453-458. 
    [28] P. A. Schweitzer, Counterexamples to the Seifert Conjecture and opening closed leaves of foliations, Annals of Mathematics, 100 (1974), 386-400.  doi: 10.2307/1971077.
    [29] J. Sotomayor and A. L. F. Machado, Structurally stable discontinuous vector fields in the plane, Qualitative Theory of Dynamical Systems, 3 (2002), 227-250.  doi: 10.1007/BF02969339.
    [30] J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, in International Conference on Differential Equations, Lisboa, 1995, World Scientific Publishing, (1998), 207–223.
    [31] E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edition, Blackie & Son limited, 1954.
  • 加载中

Figures(10)

SHARE

Article Metrics

HTML views(686) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return