The main goal of this paper is to present the existence of a vector field tangent to the unit sphere $ S^2 $ such that $ S^2 $ itself is a minimal set. This is reached using a piecewise smooth (discontinuous) vector field and following the Filippov's convention on the switching manifold. As a consequence, none regularization process applied to the initial model can be topologically equivalent to it and we obtain a vector field tangent to $ S^2 $ without equilibria.
Citation: |
[1] |
D. C. Braga, A. F. da Fonseca and L. F. Mello, Study of limit cycles in piecewise smooth perturbations of Hamiltonian centers via regularization method, Electronic Journal of Qualitative Theory of Differential Equations, 79 (2017), 1-13.
doi: 10.14232/ejqtde.2017.1.79.![]() ![]() ![]() |
[2] |
L. E. J. Brouwer, On continuous vector distributions on surfaces, in Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), 11 (1909), 850–858, https://www.dwc.knaw.nl/DL/publications/PU00013599.pdf.
![]() |
[3] |
C. A. Buzzi, T. de Carvalho and R. D. Euzébio, Chaotic planar piecewise smooth vector fields with non-trivial minimal sets, Ergodic Theory and Dynamical Systems, 36 (2016), 458-469.
doi: 10.1017/etds.2014.67.![]() ![]() ![]() |
[4] |
C. A. Buzzi, T. Carvalho and R. D. Euzébio, On Poincaré-Bendixson theorem and non-trivial minimal sets in planar nonsmooth vector fields, Publicacions Matemàtiques, 62 (2018), 113-131.
doi: 10.5565/PUBLMAT6211806.![]() ![]() ![]() |
[5] |
T. Carvalho and L. F. Gonçalves, Combing the hairy ball using a vector field without equilibria, Journal of Dynamical and Control Systems, 26 (2020), 233-242.
doi: 10.1007/s10883-019-09446-5.![]() ![]() ![]() |
[6] |
R. Cristiano, T. Carvalho, D. J. Tonon and D. J. Pagano, Hopf and Homoclinic bifurcations on the sliding vector field of switching systems in $\mathbb{R}^3$: A case study in power electronics, Physica D: Nonlinear Phenomena, 347 (2017), 12-20.
doi: 10.1016/j.physd.2017.02.005.![]() ![]() ![]() |
[7] |
T. Carvalho, D. D. Novaes and L. F. Gonçalves, Sliding Shilnikov connection in Filippov-type predator-prey model, Nonlinear Dynamics, 100 (2020), 2973-2987.
![]() |
[8] |
T. de Carvalho, On the closing lemma for planar piecewise smooth vector fields, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1174-1185.
doi: 10.1016/j.matpur.2016.04.006.![]() ![]() ![]() |
[9] |
T. de Carvalho and D. J. Tonon, Generic bifurcations of planar Filippov systems via geometric singular perturbations, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 861-881.
![]() ![]() |
[10] |
A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, 11 (1932), 333–376, http://eudml.org/doc/234887.
![]() |
[11] |
M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.
![]() |
[12] |
D. D. Dixon, Piecewise deterministic dynamics from the application of noise to singular equations of motion, Journal of Physics A: Mathematical and General, 28 (1995), 5539-5551.
![]() ![]() |
[13] |
N. M. Drissa, Fixed Point, Game and Selection Theory: From the Hairy Ball Theorem to A Non Hair-Pulling Conversation, PhD thesis, Université Paris 1 Panthéon-Sorbonne, 2016, http://hdl.handle.net/10579/8840.
![]() |
[14] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications, 1st edition, Springer Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
[15] |
C. Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory and Dynamical Systems, 6 (1986), 17-44.
doi: 10.1017/S0143385700003278.![]() ![]() ![]() |
[16] |
A. Jacquemard and D. J. Tonon, Coupled systems of non-smooth differential equations, Bulletin des Sciences Mathématiques, 136 (2012), 239-255.
doi: 10.1016/j.bulsci.2012.01.006.![]() ![]() ![]() |
[17] |
T. Kousaka, T. Kido, T. Ueta, H. Kawakami and M. Abe, Analysis of border-collision bifurcation in a simple circuit, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), 2 (2000), 481-484.
![]() |
[18] |
V. Křivan, On the gause predator-prey model with a refuge: A fresh look at the history, Journal of Theoretical Biology, 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016.![]() ![]() ![]() |
[19] |
R. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 1st edition, Springer-Verlag Berlin Heidelberg, 2004.
![]() |
[20] |
J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, Journal of Dynamics and Differential Equations, 19 (2007), 309-331.
![]() |
[21] |
J. Llibre and M. A. Teixeira, Regularization of discontinuous vector fields in dimension three, Discrete & Continuous Dynamical Systems - A, 3 (1997), 235-241.
doi: 10.3934/dcds.1997.3.235.![]() ![]() ![]() |
[22] |
J. Milnor, Analytic proofs of the "hairy ball theorem" and the brouwer fixed point theorem, The American Mathematical Monthly, 85 (1978), 521-524.
doi: 10.2307/2320860.![]() ![]() ![]() |
[23] |
L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 3rd edition, Springer-Verlag New York, 2001.
doi: 10.1007/978-1-4613-0003-8.![]() ![]() ![]() |
[24] |
S. H. Piltz, M. A. Porter and P. K. Maini, Prey switching with a linear preference trade-off, SIAM Journal on Applied Dynamical Systems, 13 (2014), 658-682.
doi: 10.1137/130910920.![]() ![]() ![]() |
[25] |
D. S. Rodrigues, P. F. A. Mancera, T. Carvalho and L. F. Gonçalves, Sliding mode control in a mathematical model to chemoimmunotherapy: The occurrence of typical singularities, Applied Mathematics and Computation, 387 (2020), 124782.
doi: 10.1016/j.amc.2019.124782.![]() ![]() ![]() |
[26] |
F. D. Rossa and F. Dercole, Generic and generalized boundary operating points in piecewise-linear (discontinuous) control systems, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 7714–7719.
![]() |
[27] |
A. J. Schwartz, A generalization of a Poincaré-Bendixson Theorem to closed two-dimensional manifolds, American Journal of Mathematics, 85 (1963), 453-458.
![]() ![]() |
[28] |
P. A. Schweitzer, Counterexamples to the Seifert Conjecture and opening closed leaves of foliations, Annals of Mathematics, 100 (1974), 386-400.
doi: 10.2307/1971077.![]() ![]() ![]() |
[29] |
J. Sotomayor and A. L. F. Machado, Structurally stable discontinuous vector fields in the plane, Qualitative Theory of Dynamical Systems, 3 (2002), 227-250.
doi: 10.1007/BF02969339.![]() ![]() ![]() |
[30] |
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, in International Conference on Differential Equations, Lisboa, 1995, World Scientific Publishing, (1998), 207–223.
![]() ![]() |
[31] |
E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edition, Blackie & Son limited, 1954.
![]() |
Sliding Vector Field
The
Item (a) shows the projection of the trajectories of
Trajectories in
Displacement function
Trajectories of the vector field
Trajectories of the vector field
Piecewise smooth vector field
Piecewise smooth vector field
Trajectory in